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Abstract  

In this work, we formulate the extended flexibility analysis, which takes into account two 

different types of uncertain parameters: measured (𝜃𝜃𝑚𝑚) and unmeasured (𝜃𝜃𝑢𝑢), as a 

rigorous multi-level optimization problem. We recursively reformulate the inner 

optimization problems by the KKT conditions and with a mixed-integer representation of 

the complementarity conditions to solve the resulting multilevel optimization problem. 

Special cases are identified, where models are comprised of convex constraints or 

constraints with monotonic variation of the uncertain parameters. In these cases, a vertex 

enumeration can be performed to solve the flexibility test. We propose two MINLP 

reformulations for the more general case yielding to similar results but different model 

sizes. The formulations are tested and compared with several examples. 
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1. Introduction 

Traditionally, the approach to handle uncertainty in the parameters of a model is to 

consider nominal conditions in plant operation and use overdesign to compensate for the 

potential impact of the uncertainty. In contrast, flexibility analysis addresses the 
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guaranteed feasibility of operation of a plant over a specified range of conditions, with 

the ultimate goal being on how to design a process for guaranteed flexible operation 

(Grossmann, Calfa and Garcia-Herreros 2014).  

First, Grossmann and Sargent (1978) addressed the problem of optimal design with 

uncertain parameters. They represented the design problem under uncertainty as a two-

stage programming problem of infinite dimensions in the uncertain parameters space, 𝜃𝜃. 

To handle the problem, a discretization procedure was applied, resulting in a finite 

number of points in the space of 𝜃𝜃. To solve the problem, the authors proposed a 

mathematical formulation strategy that led to a large NLP problem, where the inequality 

constraints were maximized with respect to the uncertain parameters. To overcome the 

difficulty of solving a large NLP problem, Grossmann and Halemane (1982) proposed a 

decomposition technique based on a projection-restriction strategy to exploit the block 

diagonal structure resulting of the mentioned representation of the problem.  

Later, Halemane and Grossmann (1983) formally proved the rigorous mathematical 

formulation for the flexibility test problem for a fixed design 𝑑𝑑. They demonstrated the 

equivalence of the logic expression (1) and the max-min-max constraint (2) that involves 

a non-trivial optimization problem, whose objective is to ensure feasible operation over 

the entire range of variation of the uncertain parameters and accounting for the fact the 

control variables z are adjusted for every parameters value 𝜃𝜃.  

∀𝜃𝜃 ∈ 𝑇𝑇 �∃ 𝑧𝑧 ,∀ 𝑗𝑗 ∈ 𝐽𝐽 �𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃) ≤ 0�� (1) 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃∈𝑇𝑇

𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧
𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃) ≤ 0 (2) 

To simplify the solution of the max-min-max problem in the flexibility constraints, 

Swaney and Grossmann (1985) considered the case of convex inequalities, where the 

solution of the flexibility constraint can be shown to lie at one of the vertices of the 

uncertainty set 𝑇𝑇 = {𝜃𝜃|𝜃𝜃𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑈𝑈𝐿𝐿}. It is then possible to solve a minimization 

problem, Eq. (3), at every vertex 𝑣𝑣 ∈ 𝑉𝑉 and then compute the maximum constraint 

violation with Eq. (4).  

𝜓𝜓(𝑑𝑑, 𝜃𝜃𝑣𝑣) = min
𝑧𝑧,𝑢𝑢

(𝑢𝑢|𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑣𝑣) ≤ 𝑢𝑢, 𝑗𝑗 ∈ 𝐽𝐽) (3) 
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𝜒𝜒(𝑑𝑑) = max
𝑣𝑣∈𝑉𝑉

{𝜓𝜓(𝑑𝑑,𝜃𝜃𝑣𝑣)} (4) 

This method is able only to find vertex solutions, and scales exponentially with the 

number of uncertain parameters. Grossmann and Floudas (1987) proposed the Active Set 

Method (ASM) consisting of a bilevel optimization problem that allows the explicit 

solution of Eq. (2). The formulation is based on the fact that the flexibility analysis can 

be performed in the space of constraints that can potentially be active in limiting the 

flexibility in a given design. 

                                  𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑, 𝜃𝜃) 

                                    s.t.  𝜓𝜓(𝑑𝑑,𝜃𝜃) = min
𝑧𝑧,𝑢𝑢

(𝑢𝑢|𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃) ≤ 𝑢𝑢, 𝑗𝑗 ∈ 𝐽𝐽) 
(5) 

Specifically, in the bilevel programming problem Eq. (5), the lower level optimization 

problem, 𝜓𝜓(𝑑𝑑,𝜃𝜃), is replaced by its KKT optimality conditions, where the 

complementarity conditions are represented with mixed-integer constraints. It is 

important to note that this MILP/MINLP formulation does not rely on the assumption of 

critical points corresponding to vertices, nor is it required the exhaustive enumeration of 

vertex points.  

Bandoni et al. (1994) proposed the worst-case algorithm (WC) consisting of two-level 

optimization strategy. The outer level is solved for fixed values of 𝜃𝜃, whereas in the inner 

level the feasibility of the constraints is established by performing maximization of each 

constraint 𝑗𝑗 ∈ 𝐽𝐽 for the optimal point found at the outer level (fixed values of control 

variables, 𝑧𝑧). The algorithm converges when there are no more violated constraints in the 

inner level. Later, Raspanti et al. (2000) improved the WC algorithm by aggregating the 

constraints using the KS function (Kreisselmeier and Steinhauser 1983), where the inner 

level problem is reduced to a single maximization problem. Based on these ideas, the 

authors proposed the single level worst case (SLWC) reformulation. In addition, they 

proposed modified versions of the ASM. The first modification involves the use the KS 

function, which is a smooth approximation to the non-differentiable maximization 

function, 𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃). This replacement results in only one constraint for which there 

is no need to include complementarity conditions, and hence leads to a single level NLP 

problem. The second modification was the replacement of the mixed-integer 

representation of the complementarity constraints with smoothing functions, again 
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resulting in an NLP problem. While the advantage of this approach is that it reduces the 

max-min-max problem to a single NLP, it has the limitations that it is nonconvex and 

does not preserve linearity if the inequalities 𝑓𝑓𝑗𝑗 are linear. 

Recently, Zhang et al. (2016) studied the flexibility analysis for linear systems and 

established the relationship between flexibility analysis and robust optimization. They 

also proposed the dual-based flexibility analysis, a new reformulation of the flexibility 

constraint, in which the lower level problem is replaced by its dual problem and binary 

variables are introduced to represent the vertices of the uncertainty set. Based on Zhang’s 

work, Jiang et al. (2018) proposed and algorithm to solve flexibility analysis of quadratic 

problems inspired on the outer-approximation algorithm for convex mixed-integer 

nonlinear programming.  

In most areas, the set of uncertain parameters is described by a hyperrectangle. However, 

in some situations, this may result in conservative estimates. Data availability allows a 

better definition of the uncertainty in a statistical sense, for example, by probability 

distribution functions. In these lines, Pistikopolous and Mazzuchi (1990) and Straub and 

Grossmann (1990) determined a stochastic flexibility index that measures the probability 

that a given design is feasible to operate for linear systems. An extension to nonlinear 

system was later introduced by Straub and Grossmann (1993). Recently, Terrazas-

Moreno et al. (2010) proposed a new approach to calculate the expected stochastic 

flexibility. The uncertain parameter space is discretized, and the probability associated to 

each point is calculated. Feasibility is checked for every collocation point by introducing 

binary variables instead of using a bounding search procedure (Straub and Grossmann 

1990). 

Rooney and Biegler (1999) introduced a more accurate description of the model 

parameter uncertainty using discrete values based upon the principal components of their 

joint confidence regions, i.e. elliptical joint confidence regions. Then, the same authors 

(2001) improved the description of model parameter uncertainties using confidence 

regions derived from the likelihood ratio test. More recently, Pulsipher and Zavala (2018) 

studied the case where the uncertainty set is characterized by multivariate Gaussian 

random variables and the model constraints are linear, yielding a mixed-integer conic 

programming (MICP) formulation for the flexibility index. In addition, they demonstrated 

that the flexibility index can be used to obtain a lower bound for the stochastic flexibility 

index (Straub and Grossmann 1990).  
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Flexibility analysis of dynamic systems has been addressed by Dimitriadis and 

Pistikopoulos (1995). First, they addressed the problem considering that the uncertainty 

profile is given. Therefore, the formulation is simplified to a single level DAE problem, 

with the objective of minimizing 𝑢𝑢 for the flexibility test problem or maximizing 𝛿𝛿 for 

the flexibility index problem (where 𝑢𝑢 and 𝛿𝛿 are scalar variables that account for the 

constraint violation and is related to the size of the uncertainty set, respectively). Then 

they addressed the general case where no specific knowledge about the uncertainty profile 

is assumed. The differential equations are converted into algebraic residual equations 

using orthogonal collocation on finite elements (Biegler 2010) and then ASM 

(Grossmann and Floudas 1987) is applied to the transformed model. The proposed 

methodology was applied to a simple system solved by Generalized Benders 

Decomposition (Geoffrion 1972). 

Flexibility and stability together were first studied by Jiang et al. (2014). Based on 

existing algorithms for flexibility analysis, the vertex enumeration and the active set 

method (ASM), the authors extend the analysis to incorporate stability constraints. In the 

vertex enumeration method, a constraint stating that all the real parts of the eigenvalues 

of the Jacobian matrix of the equality constraints must be smaller than zero is added. For 

the ASM, the stability of the obtained flexible region is checked iteratively by choosing 

a new set of active constraints whose real part is less than zero. In addition, these authors 

proposed a new formulation using eigenvalue optimization methods, where one of the 

major difficulties of the integration of flexibility and stability lies on how to convert the 

Lyapunov stability conditions into model constraints embedded in the optimization 

problem. The authors transformed the necessary condition of stability, where the real part 

of the eigenvalues must be smaller than zero into the positive definiteness of a real 

symmetric matrix to explicitly express the stability condition.  

To overcome the corresponding computational expense, Chen et al. (2018) proposed to 

incorporate a stability constraint obtained by the application of the singularity theory 

based stability analysis method. First, the singularity points are identified, and then the 

dynamic trajectories of singularity points extracted from the series of curves are regressed 

into functions of uncertain parameters and control variables, which are embedded into the 

flexibility analysis formulation as model constraints. 

Controllability, another operability consideration, was incorporated in the flexibility 

analysis by Bahri et al. (1997) and later by Escobar et al. (2013), in which the control 
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strategy is explicitly considered at the operating stage by the use of controllability metrics 

in order to design a heat exchanger network.  

Many efforts have been dedicated to study a variety of aspects related to the flexibility 

analysis during the last decades. For a more exhaustive review and a historical perspective 

on this topic, the interested reader is referred to Grossmann et al. (2014) and Zhang et al. 

(2016). However, most of these formulations are based on the assumption that during 

operation stage uncertain parameters can be measured with precision to take the 

corrective action. Ostrovsky et al. (2003) and Rooney and Biegler (2003) extended the 

flexibility analysis by grouping the uncertain parameters, 𝜃𝜃 ∈ 𝑇𝑇, into two types, measured 

(𝜃𝜃𝑚𝑚) and unmeasured (𝜃𝜃𝑢𝑢) parameters. The flexibility constraint was then extended to 

account for model parameters, 𝜃𝜃𝑢𝑢, that cannot be measured or whose estimation cannot 

be improved during the operating stage. 

In this paper, we propose new reformulations of the extended flexibility analysis where 

the innermost problems are recursively replaced by their optimality conditions and the 

complementarity conditions are expressed with mixed-integer constraints. We present the 

problem statement and motivations in Section 2. Special cases are considered to simplify 

the solution of the extended flexibility test in Section 3, where an upper bound 

formulation is derived in section 3.4 and illustrative examples are presented in Sections 

3.5 and 3.6. The MINLP formulation for the general case is derived in full detail in 

Section 4. In Section 5, an alternative formulation is presented also for the general case. 

After that, Section 6 extends the proposed formulations for the models with equality 

constraints. The formulations are applied to a variety of examples in Section 7 and finally 

conclusions are drawn. 

2. Problem Statement and Methodology 

The basic model for the flexibility analysis involves design variables, 𝑑𝑑, control variables, 

𝑧𝑧, state variables, 𝑚𝑚, and uncertain parameters, 𝜃𝜃. The physical performance of a chemical 

process can be described by the following set of constraints 

ℎ𝑖𝑖(𝑑𝑑, 𝑧𝑧, 𝑚𝑚,𝜃𝜃) = 0     𝑚𝑚 ∈ 𝐼𝐼 (6) 

𝑔𝑔𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝑚𝑚,𝜃𝜃) ≤ 0     𝑗𝑗 ∈ 𝐽𝐽  (7) 
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where ℎ𝑖𝑖 are the equations 𝑚𝑚 ∈ 𝐼𝐼  (e.g. mass and energy balances or equilibrium relations) 

which hold for steady-state operation of the process, and 𝑔𝑔𝑗𝑗 are the inequalities 𝑗𝑗 ∈ 𝐽𝐽 (e.g. 

design specifications or physical operating limits) which must be satisfied in order to 

obtain feasible operation. 

Generally, the state variables 𝑚𝑚 can be expressed as an implicit function of the design 

variables 𝑑𝑑, control variables 𝑧𝑧 with parameters 𝜃𝜃 using the equalities ℎ.  

ℎ(𝑑𝑑, 𝑧𝑧, 𝑚𝑚, 𝜃𝜃) = 0 ⟹ 𝑚𝑚 = 𝑚𝑚(𝑑𝑑, 𝑧𝑧,𝜃𝜃)    (8) 

This allows the elimination of the state variables 𝑚𝑚, as the performance specifications of 

the process can be described by the set of reduced inequality constraints in (9).  

𝑔𝑔𝑗𝑗�𝑑𝑑, 𝑧𝑧, 𝑚𝑚(𝑑𝑑, 𝑧𝑧,𝜃𝜃)� = 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃) ≤ 0 𝑗𝑗 ∈ 𝐽𝐽 (9) 

For the sake of convenience, in this paper we will focus on the reduced model. However, 

we will take into account extensions to equality constraint in Section 6. One of the main 

problems addressed in the flexibility analysis is the flexibility test problem. It consists in 

determining whether for a fixed design 𝑑𝑑 by proper adjustment of the control variables 𝑧𝑧, 

the process constraints 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃) ≤ 0, 𝑗𝑗 ∈ 𝐽𝐽, hold for any realization of uncertain 

parameters 𝜃𝜃 (Halemane and Grossmann 1983). This statement can be expressed with the 

logic expression (1), and is reformulated by the use of min and max operators as shown 

in Eq. (2). 

The flexibility test problem determines whether a design 𝑑𝑑 does or does not meet the 

flexibility target. To determine how much flexibility can be achieved in a given design, 

the flexibility index is defined as the largest value of 𝛿𝛿 for the uncertainty set 𝑇𝑇 =

{𝜃𝜃|𝜃𝜃𝑁𝑁 − 𝛿𝛿Δθ− ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑁𝑁 + 𝛿𝛿Δ𝜃𝜃+} where 𝜃𝜃𝑁𝑁 are nominal values and Δ𝜃𝜃+, Δ𝜃𝜃− are 

positive and negative expected deviation, and such that the model inequalities hold over 

the set 𝑇𝑇 (Swaney and Grossmann 1985). 

The main difference between the design and control variables is that the design variables 

𝑑𝑑 are fixed during the operation stage, while the control variables 𝑧𝑧 can be adjusted in 

order to satisfy process constraints. This implicitly requires having an accurate estimation 

of the uncertain parameters 𝜃𝜃, an assumption that is often not met in practice. 

To address these limitations, two groups of uncertain parameters are identified. The first 

group of uncertain parameters contains parameters whose values can be determined 

within any desired accuracy at the operation stage, namely the measured uncertain 

parameters, 𝜃𝜃𝑚𝑚. Meaning that appropriate sensors are available to determine accurate 
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values of all the uncertain parameters by direct measurement or by solving parameter 

estimation problems. Therefore, recourse action can be taken in order to compensate for 

their variation. Examples of this type of parameters include process conditions such as 

feed flowrates, pressures, temperatures, concentrations, and input variables such as 

product demands and electricity prices. The second group includes the unmeasured 

uncertain parameters, 𝜃𝜃𝑢𝑢, whose estimation cannot be performed or improved during the 

operation stage, and consequently no control actions can be applied to them.  

This distinction was made by Ostrovsky et al. (2003) and Rooney and Biegler (2003), 

who extended the logic constraint and the flexibility constraint into Eqs. (10) and (11), 

respectively.  

∀ 𝜃𝜃𝑚𝑚 ∈ 𝑇𝑇𝑚𝑚 �∃ 𝑧𝑧 (∀ 𝜃𝜃𝑢𝑢 ∈ 𝑇𝑇𝑢𝑢,∀ 𝑗𝑗 ∈ 𝐽𝐽�𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚, 𝜃𝜃𝑢𝑢) ≤ 0�)� (10) 

𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚
𝑧𝑧

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢

𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗∈𝐽𝐽

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚, 𝜃𝜃𝑢𝑢) ≤ 0 (11) 

where 𝑇𝑇𝑚𝑚 = {𝜃𝜃𝑚𝑚|𝜃𝜃𝑚𝑚𝐿𝐿 ≤ 𝜃𝜃𝑚𝑚 ≤ 𝜃𝜃𝑚𝑚𝑈𝑈} and 𝑇𝑇𝑢𝑢 = {𝜃𝜃𝑢𝑢|𝜃𝜃𝑢𝑢𝐿𝐿 ≤ 𝜃𝜃𝑢𝑢 ≤ 𝜃𝜃𝑢𝑢𝑈𝑈}. 

To solve the extended flexibility analysis, Ostrosvky et al. (2003) suggested an algorithm 

for calculation of the flexibility function based on a branch and bound strategy, while 

partitioning the uncertain set into subregions. On the other hand, Rooney and Biegler 

(2003) proposed an extension to the approach presented by Raspanti et al. (2000), which 

involves the use of the KS smooth function (Kreisselmeier and Steinhauser 1983) that 

aggregates all of the model inequality constraints, and the KKT derivation together with 

a smooth approximation of the complementarity conditions for the inner optimization 

problems. Therefore, the extended flexibility constraint results in a nonlinear 

programming program. It is worth noting that the innermost optimization problem is 

directly replaced by the smooth KS approximation. However, the linearity, if present, 

cannot be preserved, and even if the original constraints are convex, the resulting problem 

is non-convex (maximization of a convex objective function), which may lead to local 

solutions. Another drawback of the use of smoothing functions is that they can lead to ill-

conditioned problems.   

In this work, we reformulate the extended flexibility constraint by developing the KKT 

optimality conditions for each nested problem. In addition, in order to make the 

formulation tighter, the bounds of the nonnegative Lagrange multipliers related to the 

inequality constraints and the bounds on the slack variables are treated as model 
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constraints of the following level optimization problem. Finally, we express the 

complementarity conditions with a mixed-integer representation and assume that the Haar 

condition holds, which states that the number of active constraints is equal to the 

dimension of the control variables plus one. This condition holds true provided the 

Jacobian is full rank (Grossmann and Floudas 1987). 

In the following subsections, we derive the formulations of different cases: convex 

constraints, constraints with monotonic variation of both type of uncertain parameters and 

of unmeasured parameters with respect to model constraints, two formulations for general 

nonlinear constraints, and extensions to equality constraints. 

3. Special Cases 

In this section, we consider a special type of models where the multi-level problem can 

be simplified. In the following subsections, we will consider models characterized by 

convex functions, nonlinear functions with a monotonic variation with respect to both 

type uncertain parameters and with respect to unmeasured uncertain parameters only. 

First, we make use of following property of multilevel problems (McKinsey 1952): 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦

𝑓𝑓(𝑚𝑚,𝑦𝑦) ↔ 𝑚𝑚𝑚𝑚𝑚𝑚
𝑦𝑦

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

𝑓𝑓(𝑚𝑚,𝑦𝑦) (12) 

as the order of the inner max operators is interchangeable and Eq. (11) can be equivalently 

expressed as follows: 

(𝑃𝑃1):                   𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑, 𝜃𝜃𝑚𝑚) 

                            s.t. 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧,𝑢𝑢

𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) 

                       s.t 𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) = max
𝑗𝑗∈𝐽𝐽

max
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢 

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) 

where 𝑇𝑇𝑚𝑚 = {𝜃𝜃𝑚𝑚|𝜃𝜃𝑚𝑚𝐿𝐿 ≤ 𝜃𝜃𝑚𝑚 ≤ 𝜃𝜃𝑚𝑚𝑈𝑈} and 𝑇𝑇𝑢𝑢 = {𝜃𝜃𝑢𝑢|𝜃𝜃𝑢𝑢𝐿𝐿 ≤ 𝜃𝜃𝑢𝑢 ≤ 𝜃𝜃𝑢𝑢𝑈𝑈}.  

3.1. Extended Flexibility Test for Convex Constraints 

If the constraint functions 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) are jointly 1-D quasi-convex in 𝑧𝑧, 𝜃𝜃𝑚𝑚 and 𝜃𝜃𝑢𝑢, 

then the solution 𝜃𝜃𝑢𝑢∗ must lie at a vertex of 𝑇𝑇𝑢𝑢. Then 𝜁𝜁(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚) = max
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢 

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢∗) is 
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still a convex in 𝑧𝑧 and 𝜃𝜃𝑚𝑚. Therefore, 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧,𝑢𝑢

𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) is a convex problem, 

this implies that 𝜓𝜓(𝑑𝑑, 𝜃𝜃𝑚𝑚) is also convex, thus 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) ≤ 0 defines a convex region in 

𝜃𝜃𝑚𝑚 and implies that 𝜃𝜃𝑚𝑚∗  is also a vertex solution.  

Then, the solution can be obtained by vertex enumeration: 

 𝜓𝜓(𝑑𝑑, 𝜃𝜃𝑚𝑚𝑣𝑣 ) = min
𝑧𝑧,𝑢𝑢

𝑢𝑢𝑣𝑣 

                    s.t.𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚𝑣𝑣 ,𝜃𝜃𝑢𝑢𝑣𝑣) ≤ 𝑢𝑢𝑣𝑣 ∀ ∈ 𝐽𝐽 

(13) 

where 𝑢𝑢𝑣𝑣 is a scalar variable that represents the worst constraint violation at vertex 𝑣𝑣 and 

𝑉𝑉 is the set of all 2𝑛𝑛𝑛𝑛 vertices of 𝑇𝑇𝑚𝑚 and 𝑇𝑇𝑢𝑢. A negative value of 𝑢𝑢 implies that feasible 

operation can be ensured over the whole range of variation of the uncertain parameters 

for a fixed design 𝑑𝑑, otherwise it cannot be ensured. Then solution corresponds to the 

largest value of 𝑢𝑢𝑣𝑣 obtained among the 2𝑛𝑛𝑛𝑛 vertices in 𝑉𝑉.  

𝜒𝜒(𝑑𝑑) = max
𝑣𝑣∈𝑉𝑉

{ 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚𝑣𝑣 )} (14) 

3.2. Extended Flexibility Test for Constraints with Monotonic Variation of 

Unmeasured and Measured Uncertain Parameters 

In this section, we consider that the innermost problem of (P1) is described by monotonic 

functions with respect to 𝜃𝜃𝑢𝑢 and 𝜃𝜃𝑚𝑚. 

Definition 

Let 𝑓𝑓 be defined on a set S. We say that 𝑓𝑓 increases on the set S if and only if, for each 

𝑚𝑚 ∈ 𝑆𝑆 and 𝑦𝑦 ∈ 𝑆𝑆 with 𝑚𝑚 < 𝑦𝑦, then 𝑓𝑓(𝑚𝑚) ≤ 𝑓𝑓(𝑦𝑦). If strict inequality always holds, 𝑓𝑓 is 

strictly increasing on the set 𝑆𝑆. An analogous definition hold for decreasing and strictly 

decreasing. A function that is either increasing or decreasing is called monotone.  

An important feature of this type of functions is that their derivative is one-signed, i.e. 

𝜕𝜕𝑓𝑓𝑗𝑗/𝜕𝜕𝜃𝜃𝑢𝑢 ∀ 𝑗𝑗 ∈ 𝐽𝐽 and 𝜕𝜕𝑓𝑓𝑗𝑗/𝜕𝜕𝜃𝜃𝑚𝑚 ∀ 𝑗𝑗 ∈ 𝐽𝐽 are one-singed. 

Theorem 1 

(i)Without loss of generality, suppose that 𝑓𝑓 is increasing and bounded above on (𝑚𝑚, 𝑏𝑏) 

with smallest upper bound 𝑈𝑈. Then 𝑓𝑓(𝑚𝑚) → 𝑈𝑈 as 𝑚𝑚 → 𝑏𝑏−. 

(ii) Let 𝑓𝑓 be increasing and bounded below on (𝑚𝑚, 𝑏𝑏) with largest lower bound 𝐿𝐿. Then 

𝑓𝑓(𝑚𝑚) → 𝐿𝐿 as 𝑚𝑚 → 𝑚𝑚+. 

Proof (Binmore 1982). 
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(i) For any 𝜖𝜖 > 0, there is a 𝛿𝛿 such that 𝑏𝑏 − 𝛿𝛿 < 𝑚𝑚 < 𝑏𝑏 ⇒ |𝑓𝑓(𝑚𝑚) − 𝑈𝑈| < 𝜖𝜖.  

i.e. 𝑈𝑈 − 𝜖𝜖 < 𝑓𝑓(𝑚𝑚) < 𝑈𝑈 + 𝜖𝜖 

The inequality 𝑓𝑓(𝑚𝑚) < 𝐿𝐿 + 𝜖𝜖 is automatically satisfied because 𝑈𝑈is an upper bound for 𝑓𝑓 

on (𝑚𝑚, 𝑏𝑏). Since 𝑈𝑈 − 𝜖𝜖 is not an upper bound for 𝑓𝑓 on (𝑚𝑚, 𝑏𝑏), there exists a 𝑐𝑐 ∈ (𝑚𝑚, 𝑏𝑏) such 

that 𝑈𝑈 − 𝜖𝜖 < 𝑓𝑓(𝑐𝑐). But 𝑓𝑓 increases on (𝑚𝑚, 𝑏𝑏), therefore for any 𝑚𝑚 satisfying 𝑐𝑐 < 𝑚𝑚 < 𝑏𝑏, 

then 𝑈𝑈 − 𝜖𝜖 < 𝑓𝑓(𝑐𝑐) ≤ 𝑓𝑓(𝑚𝑚), where 𝛿𝛿 = 𝑏𝑏 − 𝑐𝑐. □ 

Hence, the solution 𝜃𝜃𝑢𝑢∗ and 𝜃𝜃𝑚𝑚∗  of problem (P1) must lie in one of the extreme points 𝑇𝑇𝑢𝑢 

and 𝑇𝑇𝑚𝑚, respectively. It can be obtained solving problem (13) for each vertex in 𝑉𝑉 to 

global optimality and then computing the worst constraint violation with (14). 

3.3. Extended Flexibility Test for Constraints with Monotonic Variation of 

Unmeasured Uncertain Parameters 

If the innermost problem of (P1) is described by monotonic functions with respect to 𝜃𝜃𝑢𝑢, 

its solution for can be computed by performing the traditional flexibility test for the 

measured uncertain parameters with a vertex enumeration of the unmeasured uncertain 

parameters. The bilevel problems (P2) described are obtained by fixing the unmeasured 

uncertain parameters to the value of each vertex point. 

(𝑃𝑃2):  𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑, 𝜃𝜃𝑚𝑚)  

                        s.t.  𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧,𝑢𝑢

𝑢𝑢  

                              s.t. 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑣𝑣) ≤ 𝑢𝑢,∀ 𝑗𝑗 ∈ 𝐽𝐽  

The inequalities 𝑓𝑓𝑗𝑗 are expressed as equality constraints by the introduction of 

nonnegative slack variables, 𝑠𝑠𝑗𝑗0. The Lagrangean function of the lower level 

problem, 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚), is then described by Eq. (15), which is a parametrization of the design 

variables, 𝑑𝑑, and the measured uncertain parameters, 𝜃𝜃𝑚𝑚. 

ℒ0(𝑑𝑑,𝜃𝜃𝑚𝑚) = 𝑢𝑢 + �𝜆𝜆𝑗𝑗0

𝑗𝑗

∙ �𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑣𝑣) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0� (15) 

We apply the active set strategy (Grossmann and Floudas 1987) to obtain a single level 

optimization problem for each vertex 𝑣𝑣. In other words, the lower level problem of (P2) 
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is replaced by its KKT conditions (Eqs. (16) to (18)) and complementarity conditions (Eq. 

(19)).  

𝜕𝜕ℒ0
𝜕𝜕𝑢𝑢

= 1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 (16) 

𝜕𝜕ℒ0
𝜕𝜕𝑧𝑧

= �𝜆𝜆𝑗𝑗0

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧

= 0 (17) 

𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑣𝑣) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0,   ∀   𝑗𝑗 ∈ 𝐽𝐽 (18) 

𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0, 𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0,   ∀   𝑗𝑗 ∈ 𝐽𝐽 (19) 

It should be noted that discrete decisions are involved in the complementarity conditions, 

since they define the selection of active set of constraints (Grossmann and Floudas 1987). 

They can be replaced by the following set of 0-1 mixed-integer constraints. 

𝜆𝜆𝑗𝑗0 − 𝑦𝑦𝑗𝑗0 ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (20) 

𝑠𝑠𝑗𝑗0 − 𝑀𝑀�1 − 𝑦𝑦𝑗𝑗0� ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (21) 

𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0, 𝑦𝑦𝑗𝑗0 ∈ {0,1}, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (22) 

where 𝑀𝑀 represents an upper bound for the slacks. Necessary and complementarity 

conditions expressed with a mixed-integer representation are replaced in problem (P2) 

leading to 𝑣𝑣 single level MILP/MINLP problem for every 𝑣𝑣 ∈ 𝑉𝑉. 

(𝑃𝑃3):                        𝜒𝜒𝑣𝑣(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝑢𝑢𝑣𝑣 
(23) 

s.t.  𝜃𝜃𝑚𝑚𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃𝑚𝑚 ≤ 𝜃𝜃𝑚𝑚𝑈𝑈𝐿𝐿 (24) 

1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 (25) 
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�𝜆𝜆𝑗𝑗0

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧

= 0 (26) 

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑣𝑣) − 𝑢𝑢𝑣𝑣 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (27) 

𝜆𝜆𝑗𝑗0 − 𝑦𝑦𝑗𝑗0 ≤ 0,                         ∀   𝑗𝑗 ∈ 𝐽𝐽 (28) 

𝑠𝑠𝑗𝑗0 − 𝑀𝑀�1 − 𝑦𝑦𝑗𝑗0� ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (29) 

�𝑦𝑦𝑗𝑗0

𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 (30) 

𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0, 𝑦𝑦𝑗𝑗0 ∈ {0,1}  ∀ 𝑗𝑗 ∈ 𝐽𝐽 (31) 

In addition, Eq. (30) enforces the constraint that the potential sets of active constraints are 

at most 𝑚𝑚𝑧𝑧 + 1, where 𝑚𝑚𝑧𝑧 stands for the dimension of the vector of control variables 𝑧𝑧. 

Take for example a system with two unmeasured uncertain parameters, where the 

unmeasuerd uncertain parameter set has four vertices. 𝜃𝜃𝑢𝑢 is fixed at the diferent vertices: 

and the traditional flexibility analysis is performed four times (one time for each vertex). 

The solution corresponds to the largest value of 𝑢𝑢𝑣𝑣 obtained along the vertices.  

𝜒𝜒(𝑑𝑑) = max
𝑣𝑣∈𝑉𝑉

{𝜒𝜒𝑣𝑣(𝑑𝑑)} 

𝜒𝜒𝑣𝑣(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

min
𝑧𝑧,𝑢𝑢

(𝑢𝑢𝑣𝑣|𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑣𝑣) ≤ 𝑢𝑢𝑣𝑣, 𝑗𝑗 ∈ 𝐽𝐽) 
(32) 

where 𝑣𝑣 are the vertices {𝜃𝜃𝑢𝑢1
𝐿𝐿𝐿𝐿,𝜃𝜃𝑢𝑢2

𝐿𝐿𝐿𝐿;𝜃𝜃𝑢𝑢1
𝐿𝐿𝐿𝐿,𝜃𝜃𝑢𝑢2

𝑈𝑈𝐿𝐿;𝜃𝜃𝑢𝑢1
𝑈𝑈𝐿𝐿 ,𝜃𝜃𝑢𝑢2

𝐿𝐿𝐿𝐿;𝜃𝜃𝑢𝑢1
𝑈𝑈𝐿𝐿, 𝜃𝜃𝑢𝑢2

𝑈𝑈𝐿𝐿} for the case of two 

unmeasured uncertain parameters, and 𝑢𝑢𝑣𝑣 is computed by solving (P3) at each vertex of 

the unmeasured uncertain parameter set. 

 

 

3.4. Upper Bound of Extended Flexibility Test 

In order to avoid the vertex enumeration, an upper bound of the extended flexibility 

analysis can be computed. As already mentioned, the solution of the innermost problem 



14 
 

(P1) must lie in one of the extreme points of its range of variation. Then, the value of 𝜃𝜃𝑢𝑢 

can be fixed for each constraint 𝑗𝑗 ∈ 𝐽𝐽 depending on the sign of the derivative, 𝜕𝜕𝑓𝑓𝑗𝑗/𝜕𝜕𝜃𝜃𝑢𝑢𝑗𝑗 

as follows. 

𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑗𝑗

≥ 0 ⇒ 𝜃𝜃𝑢𝑢𝑗𝑗
∗ = 𝜃𝜃𝑢𝑢𝑈𝑈𝐿𝐿 (33) 

𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑗𝑗

< 0 ⇒ 𝜃𝜃𝑢𝑢𝑗𝑗
∗ = 𝜃𝜃𝑢𝑢𝐿𝐿𝐿𝐿 (34) 

If the set of functions 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) varies monotonically with respect to the 

unmeasured uncertain parameters, then the relationship expressed by Eqs. (33) and (34) 

holds true and the bilevel problem (P4) is obtained by replacing Eqs. (33) and (34) in 

(P1). 

(𝑃𝑃4):          𝜒𝜒𝑈𝑈𝐿𝐿(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

                           s.t.  𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧,𝑢𝑢

𝑢𝑢 

                                             s.t. 𝑓𝑓𝑗𝑗 �𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑗𝑗
∗ � ≤ 𝑢𝑢,   ∀   𝑗𝑗 ∈ 𝐽𝐽 

Similarly, (P4) is reformulated following the active set strategy (Grossmann and Floudas 

1987) but in this case leading to only one MILP/MINLP problem. 

(𝑃𝑃5):                       𝜒𝜒𝑈𝑈𝐿𝐿(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝑢𝑢 

s.t.  𝜃𝜃𝑚𝑚𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃𝑚𝑚 ≤ 𝜃𝜃𝑚𝑚𝑈𝑈𝐿𝐿 

1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 

�𝜆𝜆𝑗𝑗0

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧

= 0 

𝑓𝑓𝑗𝑗 �𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢𝑗𝑗
∗ � − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 
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𝜆𝜆𝑗𝑗0 − 𝑦𝑦𝑗𝑗0 ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝑠𝑠𝑗𝑗0 − 𝑀𝑀�1 − 𝑦𝑦𝑗𝑗0� ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

�𝑦𝑦𝑗𝑗0

𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 

𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0,𝑦𝑦𝑗𝑗0 ∈ {0,1}, ∀   𝑗𝑗 ∈ 𝐽𝐽 

It is important to note that even though the solution lies at one of the vertices of the 

unmeasured uncertain parameter set for systems with monotonic variation of the 

unmeasured uncertain parameters, fixing the values of 𝜃𝜃𝑢𝑢 at different extreme points 

simultaneously leads to an upper bound of the solution. 

3.5. Linear Example 

In this section, we illustrate the extended flexibility analysis for a convex case. Consider 

the following linear example, described by three inequalities with a single control 

variable, 𝑧𝑧, and two uncertain parameters, 𝜃𝜃1 and 𝜃𝜃2.  

𝑓𝑓1 = 𝑧𝑧 − 𝜃𝜃1 + 2 ∙ 𝜃𝜃2 − 5 ≤ 0 (35) 

𝑓𝑓2 = −𝑧𝑧 −
𝜃𝜃1
3
−
𝜃𝜃2
2
− 3 ≤ 0 (36) 

𝑓𝑓3 = 𝑧𝑧 + 𝜃𝜃1 − 𝜃𝜃2 − 6 ≤ 0 (37) 

We calculate the flexibility test of the inequalities to over the specified uncertain set 0 ≤

𝜃𝜃1 ≤ 8, 0 ≤ 𝜃𝜃2 ≤ 5. As there is one control variable, there are two active constraints at 

the solution. We identify two sets of active constraints: active set 1 involves constraints 

𝑓𝑓1 and 𝑓𝑓2, and active set 2 involves 𝑓𝑓2 and 𝑓𝑓3. Then, we project the feasible region into 

the space of 𝜃𝜃 ∙ 𝑢𝑢 by taking into account the potential active sets. 

First, we consider the case that control actions can compensate for all the uncertain 

parameters, therefore we apply the active set method formulation of the traditional 

flexibility analysis described by problem (PA1) to solve the flexibility test problem. In 
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Figure 1, we present the projection of the feasible region onto the space 𝜃𝜃 ∙ 𝑢𝑢, where the 

maximum value of 𝑢𝑢 corresponds to point (i), which is a negative value (-0.25), implying 

that feasible operation can be ensured over the entire range of variation of the uncertain 

parameters. Numerical results of this case are detailed in the first column of Table 1. 

 
Figure 1. Projection of example 1 onto the space of the 𝜃𝜃 ∙ 𝑢𝑢. (i) Maximum constraint 
violation, (ii) minimum constraint violation, black hyperplane: active set 1: 𝑓𝑓1 and 𝑓𝑓2, 
grey hyperplane: active set 2: 𝑓𝑓2 and 𝑓𝑓3. 

Then, we consider the case that 𝜃𝜃1 corresponds to a measured uncertain parameter and 

𝜃𝜃2 corresponds to an unmeasured uncertain parameter. Due to convexity, the solution of 

this system lies at one vertex of the uncertainty set, as previously explained in Section 

3.1. Therefore, we solve Eq. (13) for each vertex. The corresponding results are presented 

in the second column of Table 1, where the worst constraint violation corresponds to -

0.25, in agreement with the results obtained with the MILP of the active set method. 

 

 

 

 

Table 1. Numerical results of the flexibility test for Linear Example. 

 

Traditional Flexibility Analysis 
𝜃𝜃𝑚𝑚 = {𝜃𝜃1,𝜃𝜃2} Extended Flexibility Analysis 

Active Set Method Vertex Enumeration 
𝜃𝜃𝑚𝑚
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = {𝜃𝜃1,𝜃𝜃2} 

Vertex 
Enumeration Upper Bound 

𝜃𝜃𝑚𝑚 = {𝜃𝜃1},𝜃𝜃𝑢𝑢
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = {𝜃𝜃2} 
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𝑢𝑢 -0.25 -4 -1.83 -0.25 -5.58 -1.83 -0.25 1 
𝜃𝜃1 0 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 8 0 0 

𝜃𝜃2 5 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 
𝜃𝜃2𝑗𝑗=1 = 𝜃𝜃2𝑈𝑈𝐿𝐿 
𝜃𝜃2𝑗𝑗=2 = 𝜃𝜃2𝑈𝑈𝐿𝐿 
𝜃𝜃2𝑗𝑗=3 = 𝜃𝜃2𝐿𝐿𝐿𝐿 

𝑦𝑦1 1 A I A I 0 1 1 
𝑦𝑦2 1 A A A A 1 1 1 
𝑦𝑦3 0 I A I A 1 0 0 
𝑧𝑧 -5.25 1 -3.83 -5.25 -2.58 -3.83 -5.25 -4 
 MILP LP MILP 

Big M value: 500, solver: CPLEX, solver tolerance: 1E-6, A: active, I: inactive. 

For the sake of comparison, we perform a vertex enumeration for the unmeasured 

uncertain parameter (𝜃𝜃2). In other words, we solve (P3) fixing 𝜃𝜃𝑢𝑢 either to its lower or 

upper bound. Figure 2 shows the projection of the feasible region onto the space of 𝜃𝜃1 ∙ 𝑢𝑢 

for the two extreme values of 𝜃𝜃2. The result of the worst constraint violation (𝑢𝑢=-0.25) is 

obtained when fixing the value of 𝜃𝜃2 to its upper bound as shown in Figure 2 (b), whereas 

when 𝜃𝜃2 is fixed  at its lower bound the value of 𝑢𝑢 corresponds to -1.83 (Figure 2 (a)). 

Therefore, the extended flexibility test is passed as the worst constraint violation is a 

negative value. 

 

 

(a) (b) 

Figure 2. Projection of feasible operation onto the space of the 𝜃𝜃1 ∙ 𝑢𝑢 with 𝜃𝜃2 fixed at its 
(a) lower bound and (b) upper bound. 

Finally, we calculate the upper bound of the extended flexibility test problem applying 

the formulation described by (P5), where the values of 𝜃𝜃2𝑗𝑗 are fixed depending on the 

sign of the derivative. We can see that we obtain a conservative solution (𝑢𝑢=1), as the 

unmeasured uncertain parameter is set to two different values simultaneously.  
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Figure 3. Projection of feasible operation onto the space of the 𝜃𝜃1 ∙ 𝑢𝑢 with 𝜃𝜃2𝑗𝑗 fixed 
depending on the sign of the derivative of function 𝑓𝑓𝑗𝑗 with respect to 𝜃𝜃2. 

It is important to note, that for convex problems the formulation can be simplified because 

the solution corresponds to a vertex solution. 

3.6. Nonlinear Example 

We perform a similar analysis as in the previous section. The example has been modified 

in order to account for nonlinear terms with monotonic variation with respect to both 𝜃𝜃1 

and 𝜃𝜃2, such as cubic, arctangent and exponential functions.  

𝑓𝑓1 = 𝑧𝑧 − 𝜃𝜃13 + 2 ∙ 𝜃𝜃2 − 5 ≤ 0 (38) 

𝑓𝑓2 = −𝑧𝑧 −
𝜃𝜃1
3
− arctan (𝜃𝜃2) − 3 ≤ 0 (39) 

𝑓𝑓3 = 𝑧𝑧 + 𝜃𝜃1 −
1

2𝜃𝜃2 + 1
− 6 ≤ 0 (40) 

The flexibility test of the inequalities is performed over the same specified uncertain set 

0 ≤ 𝜃𝜃1 ≤ 8, 0 ≤ 𝜃𝜃2 ≤ 5. First, we apply the active set method, formulation (PA1), to 

solve the flexibility test problem. Again, we show the projection of the feasible region 

onto the space 𝜃𝜃 ∙ 𝑢𝑢 in Figure 4, where the maximum value of 𝑢𝑢 =0.313 corresponds to 

point (i). In this case, feasible operation cannot be ensured over the entire range of 

variation of the uncertain parameters. The results are summarized in the first column of 

Table 2. 
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Figure 4. Projection of example 2 onto the space of the 𝜃𝜃 ∙ 𝑢𝑢. (i) Maximum constraint 
violation, black hyperplane: active set 1: 𝑓𝑓1 and 𝑓𝑓2, grey hyperplane: active set 2: 𝑓𝑓2 and 
𝑓𝑓3. 

The solution of this model also lies at one vertex of the uncertainty set, as explained in 

Section 3.2. Hence, we again solve Eq. (13) for each vertex. Numerical results are shown 

in the second column of Table 1. The maximum constraint violation is 0.313, this result 

is also in agreement with the results obtained with the active set method. 

Table 2. Numerical results of the flexibility test for Nonlinear Example. 

 

Traditional Flexibility Analysis 
𝜃𝜃𝑚𝑚 = {𝜃𝜃1,𝜃𝜃2} Extended Flexibility Analysis 

Active Set Method Vertex Enumeration 
𝜃𝜃𝑚𝑚
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = {𝜃𝜃1,𝜃𝜃2} 

Vertex 
Enumeration Upper Bound 

𝜃𝜃𝑚𝑚 = {𝜃𝜃1},𝜃𝜃𝑢𝑢
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = {𝜃𝜃2} 

𝑢𝑢 0.313 -4 -2.1 0.313 -2.54 -2.12 0.313 1 
𝜃𝜃1 0 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 8 0 0 

𝜃𝜃2 5 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 

𝜃𝜃2𝑗𝑗=1 = 𝜃𝜃2𝑈𝑈𝐿𝐿 
𝜃𝜃2𝑗𝑗=2 = 𝜃𝜃2𝑈𝑈𝐿𝐿 
𝜃𝜃2𝑗𝑗=3 = 𝜃𝜃2𝐿𝐿𝐿𝐿 

 
𝑦𝑦1 1 A I A I 0 1 1 
𝑦𝑦2 1 A A A A 1 1 1 
𝑦𝑦3 0 I A I A 1 0 0 
𝑧𝑧 -4.69 1 -3.58 -4.69 -4.51 -3.52 -4.69 -4 
 MINLP NLP MINLP 

Big M value: 500, solver: LINDOGLOBAL, solver tolerance: 1E-6. A: active, I: inactive. 

Additionally, we apply the extended flexibility test considering 𝜃𝜃1 as a measured 

uncertain parameter and 𝜃𝜃2 as an unmeasured uncertain parameter by performing a vertex 
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enumeration for the unmeasured uncertain parameter, where problem (P3) is solved at 

each vertex of 𝑇𝑇𝑢𝑢. 

In Figure 5, we present the projection of the feasible region onto the space of 𝜃𝜃1 ∙ 𝑢𝑢 for 

the two extreme values of 𝜃𝜃2. The result of the worst constraint violation (𝑢𝑢=0.313) is 

obtained when fixing the value of 𝜃𝜃2 to its upper bound as shown in Figure 5 (b), whereas 

when 𝜃𝜃2 is fixed  at its lower bound the value of 𝑢𝑢 corresponds to -2.12 (Figure 5  (a)). In 

this case, the extended flexibility test is not passed, as the worst constraint violation is a 

positive value (0.313). 

 

 

(a) (b) 

Figure 5. Projection of feasible operation onto the space of the 𝜃𝜃1 ∙ 𝑢𝑢 with 𝜃𝜃2 fixed at its 
(a) lower bound and (b) upper bound. 

Moreover, we calculate the upper bound of the extended flexibility test problem by 

solving problem (P5), where the values of 𝜃𝜃2𝑗𝑗  are fixed depending on the sign of the 

derivative. We can see that again we obtain a conservative solution (𝑢𝑢=1), as the 

unmeasured uncertain parameter is set to two different values simultaneously. The details 

of this case are summarized in the last column of Table 2. 
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Figure 6. Projection of feasible operation onto the space of the 𝜃𝜃1 ∙ 𝑢𝑢 with 𝜃𝜃2𝑗𝑗 fixed 
depending on the sign of the derivative of function 𝑓𝑓𝑗𝑗 with respect to 𝜃𝜃2. 

4. General Case: NLP Problem 

In this section, we present the reformulation for the general case of nonlinear model 

constraints. The extended flexibility constraint Eq. (11) can be equivalently expressed as 

the following multi-level optimization problem (P6).  

(𝑃𝑃6):𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) (41) 

s.t. 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧
𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) (42) 

s.t. 𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) = max
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢 

𝜙𝜙(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) (43) 

s.t. 𝜙𝜙(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) = min
𝑢𝑢
𝑢𝑢 (44) 

s.t. 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) ≤ 𝑢𝑢,   ∀ 𝑗𝑗 ∈ 𝐽𝐽 (45) 

In order to solve problem (P6), we propose to replace the inner problems by their 

optimality conditions in a recursive fashion. Bounds of the nonnegative Lagrange 

multipliers and slack variables related to the inequality constraints are added as model 

constraints of the next level optimization problem in order to tighten the formulation. 

Following this procedure, we obtain a single level optimization problem. The 

complementarity conditions are represented with mixed-integer constraints, and the Haar 

conditions is assumed leading to an MINLP problem. 

First, we consider the innermost minimization problem (Eqs. (44) and (45)). The 

Lagrangean function of this problem corresponds to Eq. (46), whose necessary conditions 

are described by Eqs. (47) and (48), and complementarity conditions by Eq. (49). 

ℒ0(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚, 𝜃𝜃𝑢𝑢) = 𝑢𝑢 + �𝜆𝜆𝑗𝑗
0

𝑗𝑗

∙ (𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚, 𝜃𝜃𝑢𝑢) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0) (46) 

𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (47) 
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𝜕𝜕ℒ0
𝜕𝜕𝑢𝑢

= 1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 (48) 

𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0, 𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (49) 

Then, the obtained expressions are replaced in (P6), leading to a tri-level optimization 

problem (P7). As already mentioned, the bounds of the nonnegative Lagrange multipliers 

and slack variables are added as model constraints. In addition, the bounds of the 

unmeasured uncertain parameters are also considered as model constraints. For the sake 

of simplicity, we consider the hyperrectangle set 𝑇𝑇𝑢𝑢 to describe their variation. 

(𝑃𝑃7):𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

           s.t. 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧
𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚)  

                           s.t. 𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) = max
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢

𝜙𝜙(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) 

                                                  s.t. (47) to (49) 

                                                           𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 ≤ 0 

                                                             𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 ≤ 0 

 

After the first reformulation, the innermost problem corresponds to 𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚), whose 

Lagrangean function is given as follows. 

ℒ1(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚) = −𝑢𝑢 + �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙ �𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚, 𝜃𝜃𝑢𝑢) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0� + �𝜇𝜇2𝑗𝑗
1

𝑗𝑗

∙ (𝜆𝜆𝑗𝑗
0 ∙ 𝑠𝑠𝑗𝑗0) 

+𝜇𝜇31 ∙ �1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

�+�𝜆𝜆1𝑗𝑗
1

𝑗𝑗

∙ �−𝜆𝜆𝑗𝑗0 + 𝑠𝑠1𝑗𝑗
1 � + �𝜆𝜆2𝑗𝑗

1

𝑗𝑗

∙ �−𝑠𝑠𝑗𝑗0 + 𝑠𝑠2𝑗𝑗
1 �  

+ �𝜆𝜆3𝑘𝑘
1

𝑘𝑘

∙ �𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠3𝑘𝑘

1 � + �𝜆𝜆4𝑘𝑘
1

𝑘𝑘

∙ �𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠4𝑘𝑘

1 � 

(50) 

The same procedure is applied to (P7) to obtain the bilevel problem (P8). We first take 

the derivatives of the Lagrangean function (ℒ1) with respect to the multipliers of the 

current level 𝜇𝜇1𝑗𝑗
1 ,  𝜇𝜇2𝑗𝑗

1 , 𝜇𝜇31, 𝜆𝜆1𝑗𝑗
1 , 𝜆𝜆2𝑗𝑗

1 , 𝜆𝜆3𝑘𝑘
1 , and 𝜆𝜆4𝑘𝑘

1  leading to equations (51) to (57), which 

correspond to innermost problem of (P7). 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇1𝑗𝑗

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢)− 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (51) 
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𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇2𝑗𝑗

1 = 𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (52) 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇31

=
𝜕𝜕ℒ0
𝜕𝜕𝑢𝑢

= 1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 (53) 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜆𝜆𝑗𝑗0 + 𝑠𝑠1𝑗𝑗
1 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (54) 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝑠𝑠𝑗𝑗0  + 𝑠𝑠2𝑗𝑗
1 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (55) 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆3𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠3𝑘𝑘

1  = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (56) 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆4𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠4𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (57) 

Then, we take the derivatives of the Lagrangean function with respect to the worst 

constraint violation variable, 𝑢𝑢, the unmeasured uncertain parameters, 𝜃𝜃𝑢𝑢𝑘𝑘 , slack 

variables, 𝑠𝑠𝑗𝑗0, and nonnegative Lagrange multiplier of previous level, 𝜆𝜆𝑗𝑗0.  

𝜕𝜕ℒ1
𝜕𝜕𝑢𝑢

= −1−�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

= 0 (58) 

𝜕𝜕ℒ1
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆3𝑘𝑘
1 + 𝜆𝜆4𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (59) 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
1 + 𝜇𝜇2𝑗𝑗

1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗
1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (60) 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
1 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇31 − 𝜆𝜆1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (61) 

Finally, we include the complementarity conditions of the lower bounds of Lagrange 

multipliers and slack variables, and lower and upper bound of 𝜃𝜃𝑢𝑢𝑘𝑘 . 
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𝜆𝜆1𝑗𝑗
1 ∙ 𝑠𝑠1𝑗𝑗

1 = 0, 𝜆𝜆1𝑗𝑗
1 , 𝑠𝑠1𝑗𝑗

1 ≥ 0,        ∀ 𝑗𝑗 ∈ 𝐽𝐽  (62) 

𝜆𝜆2𝑗𝑗
1 ∙ 𝑠𝑠2𝑗𝑗

1 = 0, 𝜆𝜆2𝑗𝑗
1 , 𝑠𝑠2𝑗𝑗

1 ≥ 0,        ∀ 𝑗𝑗 ∈ 𝐽𝐽 (63) 

𝜆𝜆3𝑘𝑘
1 ∙ 𝑠𝑠3𝑘𝑘

1 = 0, 𝜆𝜆3𝑘𝑘
1 , 𝑠𝑠3𝑘𝑘

1 ,≥ 0 ,       ∀   𝑘𝑘 ∈ 𝐾𝐾 (64) 

𝜆𝜆4𝑘𝑘
1 ∙ 𝑠𝑠4𝑘𝑘

1 = 0, 𝜆𝜆4𝑘𝑘
1 , 𝑠𝑠4𝑘𝑘

1 ≥ 0 ,       ∀   𝑘𝑘 ∈ 𝐾𝐾 (65) 

We replace Eqs. (51) to (65) in (P7) in order to obtain the bilevel problem (P8). In this 

level, the bounds of the control variables are also considered as model constraints. 
(𝑃𝑃8):  𝜒𝜒(𝑑𝑑) = max

𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚
𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

s.t. 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧
𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚)  

s.t. (51) to (65) 

                             𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿−𝑧𝑧𝑛𝑛 ≤ 0,        ∀   𝑚𝑚 ∈ 𝑁𝑁 

                               𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 ≤ 0,        ∀   𝑚𝑚 ∈ 𝑁𝑁 

 

The Lagrangean function of (P8), ℒ2, is described by Eq. (66). 

ℒ2(𝑑𝑑, 𝜃𝜃𝑚𝑚) = 𝑢𝑢 + �𝜇𝜇1𝑗𝑗
2

𝑗𝑗

∙ �𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0� + �𝜇𝜇2𝑗𝑗
2

𝑗𝑗

∙ (𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0) + 𝜇𝜇32 �1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

� (66) 

+𝜇𝜇42 ∙ �−1 −�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

� + �𝜇𝜇5𝑘𝑘
2

𝑘𝑘

 ∙ ��𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

� +  �𝜇𝜇6𝑗𝑗
2 ∙ �𝜇𝜇1𝑗𝑗

1 + 𝜇𝜇2𝑗𝑗
1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗

1 �
𝑗𝑗

+ �𝜇𝜇7𝑗𝑗
2 ∙ �𝜇𝜇2𝑗𝑗

1 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇31 − 𝜆𝜆1𝑗𝑗
1 �

𝑗𝑗

+ �𝜇𝜇8𝑗𝑗
2 ∙ �−𝜆𝜆𝑗𝑗0 + 𝑠𝑠1𝑗𝑗

1 �
𝑗𝑗

+ �𝜇𝜇9𝑗𝑗
2 ∙ �−𝑠𝑠𝑗𝑗0 + 𝑠𝑠2𝑗𝑗

1 �
𝑗𝑗

+ �𝜇𝜇10𝑗𝑗
2 ∙ �𝜆𝜆1𝑗𝑗

1 ∙ 𝑠𝑠1𝑗𝑗
1 �

𝑗𝑗

+ �𝜇𝜇11𝑗𝑗
2 ∙ �𝜆𝜆2𝑗𝑗

1 ∙ 𝑠𝑠2𝑗𝑗
1 �

𝑗𝑗

+ �𝜇𝜇12𝑘𝑘
2 ∙ �𝜃𝜃𝑢𝑢𝑘𝑘

𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠3𝑘𝑘
1 � 

𝑘𝑘

+ �𝜇𝜇13𝑘𝑘
2 ∙ �𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘

𝑈𝑈𝐿𝐿 + 𝑠𝑠4𝑘𝑘
1 � 

𝑘𝑘

+ �𝜇𝜇14𝑘𝑘
2 ∙ �𝜆𝜆3𝑘𝑘

1 ∙ 𝑠𝑠3𝑘𝑘
1 � + �𝜇𝜇15𝑘𝑘

2 ∙ �𝜆𝜆4𝑘𝑘
1 ∙ 𝑠𝑠4𝑘𝑘

1 � 
𝑘𝑘

 
𝑘𝑘

+ �𝜆𝜆1𝑗𝑗
2 ∙ �−𝜆𝜆1𝑗𝑗

1 + 𝑠𝑠1𝑗𝑗
2 �

𝑗𝑗

+ �𝜆𝜆2𝑗𝑗
2 ∙ (−𝜆𝜆2𝑗𝑗

1 + 𝑠𝑠2𝑗𝑗
2 ) 

𝑗𝑗

+ �𝜆𝜆3𝑗𝑗
2 ∙ (−𝑠𝑠1𝑗𝑗

1 + 𝑠𝑠3𝑗𝑗
2 ) 

𝑗𝑗

+ �𝜆𝜆4𝑗𝑗
2 ∙ �−𝑠𝑠2𝑗𝑗

1 + 𝑠𝑠4𝑗𝑗
2 �  

𝑗𝑗

+  �𝜆𝜆5𝑘𝑘
2 ∙ �−𝜆𝜆3𝑘𝑘

1 +  𝑠𝑠5𝑘𝑘
2 � 

𝑘𝑘

+ �𝜆𝜆6𝑘𝑘
2 ∙ �−𝑠𝑠3𝑘𝑘

1 +  𝑠𝑠6𝑘𝑘
2 �

𝑘𝑘

+  �𝜆𝜆7𝑘𝑘
2 ∙ �−𝜆𝜆4𝑘𝑘

1 +  𝑠𝑠7𝑘𝑘
2 �

𝑘𝑘

+ �𝜆𝜆8𝑘𝑘
2 ∙ �−𝑠𝑠4𝑘𝑘

1 +  𝑠𝑠8𝑘𝑘
2 �  

𝑘𝑘

+  �𝜆𝜆9𝑛𝑛
2 ∙ �𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿−𝑧𝑧𝑛𝑛 +  𝑠𝑠9𝑛𝑛

2 � 
𝑛𝑛

+ �𝜆𝜆10𝑛𝑛
2 ∙ �𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 + 𝑠𝑠10𝑛𝑛

2 � 
𝑛𝑛
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The procedure is applied one more time in order to obtain the general MINLP 

formulation. Again, we take the derivative of the Lagrangean function (ℒ2) with respect 

to the multipliers of the current level 𝜇𝜇1𝑗𝑗
2 ,  𝜇𝜇2𝑗𝑗

2 , 𝜇𝜇32, 𝜇𝜇42, 𝜇𝜇5𝑘𝑘
2 , 𝜇𝜇6𝑗𝑗

2 , 𝜇𝜇7𝑗𝑗
2 , 𝜇𝜇8𝑗𝑗

2 , 𝜇𝜇9𝑗𝑗
2 , 𝜇𝜇10𝑗𝑗

2 , 𝜇𝜇11𝑗𝑗
2 , 

𝜇𝜇12𝑘𝑘
2 , 𝜇𝜇13𝑘𝑘

2 , 𝜇𝜇14𝑘𝑘
2 , 𝜇𝜇15𝑘𝑘

2 , 𝜆𝜆1𝑗𝑗
2 , 𝜆𝜆2𝑗𝑗

2 , 𝜆𝜆3𝑗𝑗
2 , 𝜆𝜆4𝑗𝑗

2 , 𝜆𝜆5𝑘𝑘
2 , 𝜆𝜆6𝑘𝑘

2 , 𝜆𝜆7𝑘𝑘
2 , 𝜆𝜆8𝑘𝑘

2 , 𝜆𝜆9𝑛𝑛
2 , and 𝜆𝜆10𝑛𝑛

2  leading to Eqs. 

(67) to (91), which correspond to innermost problem of (P8). 

𝜕𝜕ℒ2

𝜕𝜕𝜇𝜇1𝑗𝑗
2 =

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇1𝑗𝑗

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (67) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇2𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇2𝑗𝑗

1 = 𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (68) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇32

=
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇31

=
𝜕𝜕ℒ0
𝜕𝜕𝑢𝑢

= 1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 (69) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇42

=
𝜕𝜕ℒ1
𝜕𝜕𝑢𝑢

= −1−�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

= 0 (70) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇5𝑘𝑘

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1,𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆3𝑘𝑘
1 + 𝜆𝜆4𝑘𝑘

1 = 0  ∀   𝑘𝑘 ∈ 𝐾𝐾 (71) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇6𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
1 + 𝜇𝜇2𝑗𝑗

1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗
1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (72) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇7𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
1 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇31 − 𝜆𝜆1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (73) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇8𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜆𝜆1𝑗𝑗
0 + 𝑠𝑠1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (74) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇9𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝑠𝑠1𝑗𝑗
0 + 𝑠𝑠2𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (75) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇10𝑗𝑗

2 = 𝜆𝜆1𝑗𝑗
1 ∙ 𝑠𝑠1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (76) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇11𝑗𝑗

2 = 𝜆𝜆2𝑗𝑗
1 ∙ 𝑠𝑠2𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (77) 
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𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇12𝑘𝑘

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆3𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠3𝑘𝑘

1  = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (78) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇13𝑘𝑘

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆4𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠4𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (79) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇14𝑘𝑘

2 = 𝜆𝜆3𝑘𝑘
1 ∙ 𝑠𝑠3𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (80) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇15𝑘𝑘

2 = 𝜆𝜆4𝑘𝑘
1 ∙ 𝑠𝑠4𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (81) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆1𝑗𝑗

2 = −𝜆𝜆1𝑗𝑗
1 + 𝑠𝑠1𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (82) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆2𝑗𝑗

2 = −𝜆𝜆2𝑗𝑗
1 + 𝑠𝑠2𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (83) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆3𝑗𝑗

2 = −𝑠𝑠1𝑗𝑗
1 + 𝑠𝑠3𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (84) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆4𝑗𝑗

2 = −𝑠𝑠2𝑗𝑗
1 + 𝑠𝑠4𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (85) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆5𝑘𝑘

2 = −𝜆𝜆3𝑘𝑘
1 + 𝑠𝑠5𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (86) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆6𝑘𝑘

2 = −𝜆𝜆4𝑘𝑘
1 + 𝑠𝑠6𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (87) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆7𝑘𝑘

2 = −𝑠𝑠3𝑘𝑘
1 + 𝑠𝑠7𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (88) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆8𝑘𝑘

2 = −𝑠𝑠4𝑘𝑘
1 + 𝑠𝑠8𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (89) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆9𝑛𝑛

2 = 𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿−𝑧𝑧𝑛𝑛 +  𝑠𝑠9𝑛𝑛
2 − 𝑢𝑢 = 0,        ∀   𝑚𝑚 ∈ 𝑁𝑁 (90) 
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𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆10𝑛𝑛

2 = 𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 +  𝑠𝑠10𝑛𝑛
2 − 𝑢𝑢 = 0,        ∀   𝑚𝑚 ∈ 𝑁𝑁 (91) 

Next, we compute the derivative of the Lagrangean function ℒ2 with respect to the worst 

constraint violation variable, 𝑢𝑢, the unmeasured uncertain parameters, 𝜃𝜃𝑢𝑢𝑘𝑘 , the control 

variables, 𝑧𝑧𝑛𝑛, slack variables, 𝑠𝑠𝑗𝑗0, 𝑠𝑠1𝑗𝑗
1 , 𝑠𝑠2𝑗𝑗

1 , 𝑠𝑠3𝑘𝑘
1 , 𝑠𝑠3𝑘𝑘

1 , 𝑠𝑠4𝑘𝑘
1 , and nonnegative Lagrange 

multiplier of previous level, 𝜆𝜆𝑗𝑗0, 𝜇𝜇1𝑗𝑗
1 , 𝜇𝜇2𝑗𝑗

1 , 𝜇𝜇31, 𝜆𝜆1𝑗𝑗
1 , 𝜆𝜆2𝑗𝑗

1 , 𝜆𝜆3𝑘𝑘
1 , 𝜆𝜆4𝑘𝑘

1 . 

𝜕𝜕ℒ2
𝜕𝜕𝑢𝑢

= 1 −�𝜇𝜇1𝑗𝑗
2  

𝑗𝑗

−�(𝜆𝜆9𝑛𝑛
2 + 𝜆𝜆10𝑛𝑛

2 )
𝑛𝑛

= 0 (92) 

𝜕𝜕ℒ2
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1𝑗𝑗
2

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ �𝜇𝜇5𝑘𝑘′
2

𝑘𝑘′
∙�𝜇𝜇1,𝑗𝑗

1

𝑗𝑗

∙
𝜕𝜕2𝑓𝑓𝑗𝑗

𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘′
− 𝜇𝜇12𝑘𝑘

2 + 𝜇𝜇13𝑘𝑘
2 = 0 

∀   𝑘𝑘 ∈ 𝐾𝐾 
(93) 

𝜕𝜕ℒ2
𝜕𝜕𝑧𝑧𝑛𝑛

= �𝜇𝜇1𝑗𝑗
2

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛

+ �𝜇𝜇5𝑘𝑘
2

𝑘𝑘

∙�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕2𝑓𝑓𝑗𝑗

𝜕𝜕𝑧𝑧𝑛𝑛 𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘
− 𝜆𝜆9𝑛𝑛

2 + 𝜆𝜆10𝑛𝑛
2 = 0 

  ∀   𝑚𝑚 ∈ 𝑁𝑁 
(94) 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
2 + 𝜇𝜇2𝑗𝑗

2 ∙ 𝜆𝜆𝑗𝑗0 + 𝜇𝜇7𝑗𝑗
2 ∙ 𝜇𝜇2𝑗𝑗

1 − 𝜇𝜇9𝑗𝑗
2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (95) 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠1𝑗𝑗

1 = 𝜇𝜇8𝑗𝑗
2 +  𝜇𝜇10𝑗𝑗

2 ∙ 𝜆𝜆1𝑗𝑗
1 − 𝜆𝜆3𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (96) 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠2𝑗𝑗 

1 = 𝜇𝜇9𝑗𝑗
2 + 𝜇𝜇11𝑗𝑗

2 ∙ 𝜆𝜆2𝑗𝑗
1 − 𝜆𝜆4𝑗𝑗

2  = 0 , ∀   𝑗𝑗 ∈ 𝐽𝐽 (97) 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠3𝑘𝑘

1 = 𝜇𝜇12𝑘𝑘
2 + 𝜇𝜇14𝑘𝑘

2 ∙ 𝜆𝜆3𝑘𝑘
1 −  𝜆𝜆6𝑘𝑘

2 = 0, ∀ 𝑘𝑘 ∈ 𝐾𝐾 (98) 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠4𝑘𝑘

1 = 𝜇𝜇13𝑘𝑘
2 + 𝜇𝜇15𝑘𝑘

2 ∙ 𝜆𝜆4𝑘𝑘
1 −  𝜆𝜆8𝑘𝑘

2 = 0, ∀ 𝑘𝑘 ∈ 𝐾𝐾 (99) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
2 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇32 + 𝜇𝜇6𝑗𝑗

2 ∙ 𝜇𝜇2𝑗𝑗
1 − 𝜇𝜇8𝑗𝑗

2 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (100) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇1𝑗𝑗

1 = −𝜇𝜇42 + �𝜇𝜇52

𝑘𝑘

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ 𝜇𝜇6𝑗𝑗
2 = 0, ∀ 𝑗𝑗 ∈ 𝐽𝐽 (101) 
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𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇2𝑗𝑗

1 = 𝜇𝜇6𝑗𝑗
2 ∙ 𝜆𝜆𝑗𝑗0 + 𝜇𝜇7𝑗𝑗

2 ∙ 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (102) 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇31

= −�𝜇𝜇7𝑗𝑗
2

𝑗𝑗

= 0 (103) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜇𝜇7𝑗𝑗
2 + 𝜇𝜇10𝑗𝑗

2 ∙ 𝑠𝑠1𝑗𝑗
1 − 𝜆𝜆1𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (104) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝜇𝜇6𝑗𝑗
2 + 𝜇𝜇11𝑗𝑗

2 ∙ 𝑠𝑠2𝑗𝑗
1 − 𝜆𝜆2𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 (105) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆3𝑘𝑘

1 = 𝜇𝜇14𝑘𝑘
2 ∙ 𝑠𝑠3𝑘𝑘

1 −  𝜆𝜆5𝑘𝑘
2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (106) 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆4𝑘𝑘

1 = 𝜇𝜇15𝑘𝑘
2 ∙ 𝑠𝑠4𝑘𝑘

1 −  𝜆𝜆7𝑘𝑘
2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 (107) 

The complementarity conditions of the third level are related with the lower bound of the 

Lagrange multipliers and slack variables related to original model constraints (Eq. (108)), 

and to the lower and upper bound of the unmeasured uncertain parameters (Eq. (109)). In 

addition, there are complementarity conditions related to the lower and upper bounds of 

the control variables (Eq. (110)). 

𝜆𝜆𝑙𝑙𝑗𝑗
2 ∙ 𝑠𝑠𝑙𝑙𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽, 𝑙𝑙 = {1, … , 4} (108) 

𝜆𝜆𝑙𝑙𝑘𝑘
2 ∙ 𝑠𝑠𝑙𝑙𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾, 𝑙𝑙 = {5, … ,8}  (109) 

𝜆𝜆𝑙𝑙𝑛𝑛
2 ∙ 𝑠𝑠𝑙𝑙𝑛𝑛

2 = 0 , ∀   𝑚𝑚 ∈ 𝑁𝑁, 𝑙𝑙 = {9,10} (110) 

The complementarity conditions presented in (108) to (110) are all replaced by the 

following mixed-integer constraints which for the sake of conciseness are written in 

generic form. 

𝜆𝜆 − 𝑀𝑀 ∙ 𝑦𝑦 ≤ 0 (111) 
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𝑠𝑠 − 𝑀𝑀 ∙ (1 − 𝑦𝑦) ≤ 0 (112) 

𝜆𝜆, 𝑠𝑠 ≥ 0, 𝑦𝑦 ∈ {0,1} (113) 

where 𝑀𝑀 corresponds to the Big M value. 

The active set strategy is based on a determination of the potential sets of active 

constraints from the stationarity conditions by using the Property 1 in Grossmann and 

Floudas (1987) and the complementarity conditions.  

�𝑦𝑦𝑗𝑗0

𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 
(114) 

where 𝑦𝑦𝑗𝑗0 are binary variables to model the choice of the active set of original model 
constraints. Finally, the MINLP for the general case of extended flexibility analysis 
corresponds to (P9). 

(𝑃𝑃9):                             𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

s.t. (67) to (110) 

�𝑦𝑦𝑗𝑗0

𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 

 

 

The MINLP in (P9) is generally nonconvex and requires the use of a global optimization 
algorithms. 

 

5. Alternative Reformulation 

In order to study the effect of changing the order in Eq. (11) of the two innermost 

maximization problems, we propose and compare a different reformulation. The 

alternative reformulation to Eq. (11) is based on the property introduced in Section 3, 

which states that the order of the innermost maximization problems is interchangeable. 

Then the extended flexibility constraint can be expressed as follows. 

𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

min
𝑧𝑧

max
𝑗𝑗∈𝐽𝐽

max
𝜃𝜃𝑢𝑢∈ 𝑇𝑇𝑢𝑢

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧, 𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) (115) 

which is equivalently expressed, 

(𝑃𝑃10):𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈ 𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 
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          s.t. 𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) = min
𝑧𝑧,𝑢𝑢

𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) 

                       s.t. 𝜁𝜁(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚) = max
𝜃𝜃𝑢𝑢∈𝑇𝑇𝑢𝑢

𝑢𝑢 

                                     s.t. 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) ≤ 𝑢𝑢,   ∀ 𝑗𝑗 ∈ 𝐽𝐽 

                                                                        𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃𝑢𝑢𝑘𝑘 ≤ 𝜃𝜃𝑢𝑢𝑘𝑘

𝑈𝑈𝐿𝐿 

(P10) is a tri-level problem, therefore the replacement of the inner problems by their 

optimality conditions must be performed twice (instead of thrice). The bounds on the 

unmeasured uncertain parameters, on the control variables and on the non-negative 

Lagrange multipliers and slack variables are considered as model constraints. The 

resulting single level optimization problem is provided for the alternative reformulation 

in Table B1.  

6. Extension to Equality Constraints  

Until now, we have been considering models described by a set of reduced inequality 

constraints. In this section, we consider the case of model consisting of equality and 

inequality constraints.  

For the special cases (P3) and (P5), we should note that if the non-reduced models contain 

equality constraints that do not depend on the unmeasured uncertain parameters, the 

MILP/MINLP problems can be easily extended to handle such a case. In case the 

unmeasured uncertain parameters are involved in the equality constraints, a monotonicity 

analysis must be performed in order to determine whether the formulations can be applied 

or not, and to determine the unmeasured uncertain parameters values in the upper bound 

reformulation. If the monotonicity analysis cannot be performed, the problem should be 

tackled with the general formulations. 

For the general NLP problem, we follow a similar procedure as detailed in section 4 in 

order to obtain the single level optimization model. For the sake of completeness, we 

present the extended version of the alternative formulation in Table 3 and the extended 

version of the original formulation is provided in the Table C 1 of the Appendix C. 
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Table 3. Alternative formulation of a model consisting of equality and inequality 
constraints. 

Description Equations 

Objective function (𝑃𝑃11):𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

Model equality 
constraints 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇0𝑖𝑖

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜇𝜇𝑖𝑖0

 ℎ𝑖𝑖(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢) = 0, ∀ 𝑚𝑚 ∈ 𝐼𝐼 

Model inequality 
constraints 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇1𝑗𝑗

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑔𝑔𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢)− 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

1st level 
complementarity 

conditions 

Original model 
constraints 𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

Lower bound 𝜃𝜃𝑢𝑢 𝜆𝜆𝐿𝐿𝑘𝑘
0 ∙ 𝑠𝑠𝐿𝐿𝑘𝑘

0 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 𝜆𝜆𝑈𝑈𝑘𝑘
0 ∙ 𝑠𝑠𝑈𝑈𝑘𝑘

0 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
model variables 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇5𝑘𝑘

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝝁𝝁𝒊𝒊𝟎𝟎

𝒊𝒊

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌

+ �𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆𝐿𝐿𝑘𝑘
0 + 𝜆𝜆𝑈𝑈𝑘𝑘

0 = 0 

∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇6𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠𝐿𝐿𝑘𝑘

0 = 0,   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇7𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠𝑈𝑈𝑘𝑘

0 = 0,   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives 
w.r.t. model 

variables 

𝜕𝜕ℒ1
𝜕𝜕𝑢𝑢

= 1 −�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

−�(𝜆𝜆𝐿𝐿𝑛𝑛
1 + 𝜆𝜆𝑈𝑈𝑛𝑛

1 )
𝑛𝑛

= 0 

𝜕𝜕ℒ1
𝜕𝜕𝑧𝑧𝑛𝑛

= 
�𝜇𝜇5𝑘𝑘

1

𝑘𝑘

∙ ��𝝁𝝁𝒊𝒊𝟎𝟎 ∙
𝝏𝝏𝟐𝟐𝒉𝒉𝒊𝒊

𝝏𝝏𝒛𝒛𝒏𝒏𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌𝒊𝒊

+ �𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕2𝑔𝑔𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

� 

+�𝝁𝝁𝟎𝟎𝒊𝒊
𝟏𝟏 ∙

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒛𝒛𝒏𝒏𝒊𝒊

+ �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛

− 𝜆𝜆𝐿𝐿𝑛𝑛
1 + 𝜆𝜆𝑈𝑈𝑛𝑛

1 = 0 

  ∀   𝑚𝑚 ∈ 𝑁𝑁 
𝜕𝜕ℒ1
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= 
�  𝜇𝜇5𝑘𝑘′

1

𝑘𝑘′

∙ ��𝝁𝝁𝒊𝒊𝟎𝟎 ∙
𝝏𝝏𝟐𝟐𝒉𝒉𝒊𝒊

𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌′𝒊𝒊

+ �𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕2𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘′

� 

+�𝝁𝝁𝟎𝟎𝒊𝒊
𝟏𝟏 ∙

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌𝒊𝒊

+ �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜇𝜇6𝑘𝑘
1 + 𝜇𝜇7𝑘𝑘

1 = 0 

  ∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
slack variable 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
1 + 𝜇𝜇2𝑗𝑗

1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝐿𝐿𝑘𝑘

0 = 𝜇𝜇4𝑘𝑘
1 ∙ 𝜆𝜆𝐿𝐿𝑘𝑘

0 + 𝜇𝜇6𝑘𝑘
1 − 𝜆𝜆2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 
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Description Equations 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑈𝑈𝑘𝑘

0 = 𝜇𝜇3𝑘𝑘
1 ∙ 𝜆𝜆𝑈𝑈𝑘𝑘

0 + 𝜇𝜇7𝑘𝑘
1 − 𝜆𝜆2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
Lagrange 

multiplier of 
previous level 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇𝑖𝑖0

= �𝝁𝝁𝟓𝟓𝒌𝒌
𝟏𝟏 ∙

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌𝒌𝒌

= 𝟎𝟎, ∀ 𝒊𝒊 ∈ 𝑰𝑰 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
1 ∙ 𝑠𝑠𝑗𝑗0 +�𝜇𝜇5𝑘𝑘

1

𝑘𝑘

𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆1𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝐿𝐿𝑘𝑘

0 = 𝜇𝜇4𝑘𝑘
1 ∙ 𝑠𝑠𝐿𝐿𝑘𝑘

0 − 𝜇𝜇5𝑘𝑘
1 − 𝜆𝜆1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑈𝑈𝑘𝑘

0 = 𝜇𝜇3𝑘𝑘
1 ∙ 𝑠𝑠𝑈𝑈𝑘𝑘

0 + 𝜇𝜇5𝑘𝑘
1 − 𝜆𝜆1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝐿𝐿𝑛𝑛

1 = −𝑧𝑧𝑛𝑛 + 𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿 + 𝑠𝑠𝐿𝐿𝑛𝑛
1 − 𝑢𝑢 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 

Upper bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑈𝑈𝑛𝑛

1 = 𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 + 𝑠𝑠𝑈𝑈𝑛𝑛
1 − 𝑢𝑢 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 

Bounds on 
Lagrange 

multipliers and 
slack variables 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜆𝜆𝑗𝑗0 +  𝑠𝑠1𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝑠𝑠𝑗𝑗0  +  𝑠𝑠2𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝐿𝐿𝑘𝑘

1 = −𝜆𝜆𝐿𝐿𝑘𝑘
0  +  𝑠𝑠1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝐿𝐿𝑘𝑘

1 = −𝑠𝑠𝐿𝐿,𝑘𝑘
0 + 𝑠𝑠2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑈𝑈𝑘𝑘

1 = −𝜆𝜆𝑈𝑈𝑘𝑘
0 +  𝑠𝑠1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑈𝑈𝑘𝑘

1 = −𝑠𝑠𝑈𝑈𝑘𝑘
0 +  𝑠𝑠2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾  

2nd level 
complementarity 

conditions 

Bounds on Lagrange multipliers and 
slack variables related to original 

model constraints 

𝜆𝜆1𝑗𝑗
1 ∙  𝑠𝑠1𝑗𝑗

1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜆𝜆2𝑗𝑗
1 ∙  𝑠𝑠2𝑗𝑗

1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

Bounds on Lagrange multipliers and 
slack variables related to lower and 

upper bound of unmeasured 
uncertain parameters 

𝜆𝜆1𝐿𝐿𝑘𝑘
1 ∙ 𝑠𝑠1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆2𝐿𝐿𝑘𝑘
1 ∙ 𝑠𝑠2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆1𝑈𝑈𝑘𝑘
1 ∙ 𝑠𝑠1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆2𝑈𝑈𝑘𝑘
1 ∙ 𝑠𝑠2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝑧𝑧𝑛𝑛 𝜆𝜆𝐿𝐿𝑛𝑛
1 ∙ 𝑠𝑠𝐿𝐿𝑛𝑛

1 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 
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Description Equations 

Upper bound 𝑧𝑧𝑛𝑛 𝜆𝜆𝑈𝑈𝑛𝑛
1 ∙ 𝑠𝑠𝑈𝑈𝑛𝑛

1 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 

Haar Condition �𝑦𝑦𝑗𝑗
𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 

Model variables: unmeasured uncertain parameter 𝜃𝜃𝑢𝑢, control and state variables 𝑧𝑧, measured 
uncertain parameters 𝜃𝜃𝑚𝑚, and fixed design variables 𝑑𝑑. Additional variables: slack variables 𝑠𝑠, 
nonnegative 𝜆𝜆 and free 𝜇𝜇 Lagrange multipliers. 

Note: complementarity conditions are replaced by mixed-integer constraints as described by Eq. 
(111) and (112). 
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7. Numerical Examples 

The proposed formulations are illustrated in the following examples. In Sections 7.1 to 

7.4, the general case formulation is applied and compared against cases with different 

degrees of control. On the one hand, the case where control actions can compensate for 

variations of all uncertain parameters is considered, namely the traditional flexibility 

analysis. On the other hand, the no-recourse case is considered, like the static robust 

optimization. The solution of the proposed formulations lies between these two extremes.  

In addition, we include the results for the special case formulations described in Section 

3 and the alternative formulation for the general case described in Section 5.  

The specific results for each case then involve the following equations: 

• Traditional Flexibility Analysis: (PA1). 

• Original Formulation of Extended Flexibility Anaysis: (P9) for reduced models 

and (PC1) for non-reduced models. 

• Alternative Formulation of Extended Flexibility Anaysis: (PB1) for reduced 

models and (P11) for non-reduced models.  

• Vertex Enumertation for extended flexibility analysis: Eq. (32) 

• Upper bound formulation: (P5). 

• No control: (PA2).  

Moreover, a computational framework has been developed to automatically perform the 

proposed reformulations. For more details, the reader is referred to Appendix D. 

 

7.1. Linear Example 2 

The following example for a flexibility test comprised of three constraints, one control 

variable, 𝑧𝑧, two unmeasured uncertain parameters, 𝜃𝜃1 and 𝜃𝜃2, and one measured uncertain 

parameter 𝜃𝜃3. The example was adapted from Rooney and Biegler (2003). 

𝑓𝑓1 = 𝑧𝑧 + 𝑑𝑑1 − 3𝑑𝑑2 − 𝜃𝜃1 + 0.5 ∙ 𝜃𝜃2 + 2 ∙ 𝜃𝜃3 − 8 ≤ 0 (116) 

𝑓𝑓2 = −𝑧𝑧 + 𝑑𝑑2 −
𝜃𝜃1
3
− 𝜃𝜃2 −

𝜃𝜃3
2
−

8
3
≤ 0 (117) 
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𝑓𝑓3 = 𝑧𝑧 − 𝑑𝑑1 + 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3 − 4 ≤ 0 (118) 

11.8907 ≤ 𝜃𝜃1 ≤ 18.1093 (119) 

7.29714 ≤ 𝜃𝜃2 ≤ 12.0729 (120) 

10 ≤ 𝜃𝜃3 ≤ 20  (121) 

where the design variables are fixed 𝑑𝑑1=33.866 and 𝑑𝑑2=22.429, corresponding to a 

feasible design. The solution of the extended flexbility analysis has to lie between 𝑢𝑢=-

4.07, corresponding to the Traditional Flexibility Analysis (TFA) solution, and 𝑢𝑢=4.19, 

corresponding to the no control case solution. When we apply the upper bound 

reformulation, even though a conservative solution is obtained (𝑢𝑢=-3.04), the flexibility 

can be ensured over the entire range of variation of the uncertain parameters as the value 

of 𝑢𝑢 is negative. The worst constraint violation obtained with the vertex enumeration 

strategy corresponds to 𝑢𝑢=-4.07. This value coincides with the solution obtained by 

applying the original and alternative extended flexibility analysis formulations, and the 

traditional flexibility analysis formulation. The resulting MINLP from the original EFA 

formulation takes shorter computational time (0.332 s) than the one resulting from the 

alternative EFA formulation (1.13 s). The computational results are shown in Table 5. 

 

Table 4. Numerical results of the flexibility test for Linear Example 2. 

 

Traditional 
Flexibility 
Analysis 

Extended Flexibility Analysis 
No Control Original 

Formulation 
Alternative 

Formulation Vertex Enumeration for 𝜃𝜃𝑢𝑢 Upper 
Bound 

𝜃𝜃𝑚𝑚
= {𝜃𝜃1,𝜃𝜃2,𝜃𝜃3} 

𝜃𝜃𝑢𝑢 = {𝜃𝜃1,𝜃𝜃2} 
𝜃𝜃𝑚𝑚 = {𝜃𝜃3} 

𝜃𝜃𝑢𝑢
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = {𝜃𝜃1,𝜃𝜃2} 
𝜃𝜃𝑚𝑚 = {𝜃𝜃3} 

𝜃𝜃𝑢𝑢
= {𝜃𝜃1,𝜃𝜃2,𝜃𝜃3} 

𝑢𝑢 -4.07 -4.07 -4.07 -4.07 -5.11 -4.28 -8.42 -3.04 4.19 
𝜃𝜃1 11.89 11.891 11.891 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝐿𝐿𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 𝜃𝜃1𝑈𝑈𝐿𝐿 * 12.927 

𝜃𝜃2 7.30 7.30 7.30 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 𝜃𝜃2𝐿𝐿𝐿𝐿 𝜃𝜃2𝑈𝑈𝐿𝐿 * 7.927 
𝜃𝜃3 20 20 20 20 20 20 20 20 10 
𝑦𝑦1 1 1 1 1 1 0 0 1 0 
𝑦𝑦2 1 1 1 1 1 1 1 1 1 
𝑦𝑦3 0 0 0 0 0 1 1 0 0 
𝑧𝑧 5.28 5.28 5.28 5.28 2.18 3.41 3.41 4.24 0** 

Orig: original reformulation, Alt: alternative formulation, (*) 𝜃𝜃𝑢𝑢 fixed depending on the sign of 
the derivative. (**) 𝑧𝑧 fixed to 0 for the no control case. 
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Table 5. Computational statistics and model size of example 2. 

 
Traditional 
Flexibility 
Analysis 

Extened Flexibility Analysis No 
Control Original 

Formulation 
Alternative 

Formulation Vertex Enumeration for 𝜃𝜃𝑢𝑢 Upper 
bound 

#bin var. 3 35 23 3 3 3 3 3 3 
#cont. var. 15 154 91 13 13 13 13 13 11 

#constraints 19 156 93 15 15 15 15 15 14 
Problem MILP MINLP MILP 
Time [s] 0.100 0.332 1.13 0.093 0.087 0.125 0.094 0.239 0.222 
Solver CPLEX BARON CPLEX 

Big M value: 500; solver tolerance: 1E-5, 0 ≤ 𝑧𝑧 ≤ 6. 

 

7.2. Heat Exchanger Network Example 

A well-known example in the flexibility analysis literature is the heat exchanger network, 

shown in Figure 1 (Saboo, Morari and Woodcock 1985). Grossmann and Floudas (1987) 

used this example to introduce the active set strategy, which is able to find non-vertex 

solutions. After the elimination of the state variables, the reduced model consists of four 

constraints, and three variables: the cooling load (𝑄𝑄𝑐𝑐) is the control variable, and the heat 

capacity flowrate of streams 1 and 2 (𝐹𝐹𝐻𝐻1 and 𝐹𝐹𝐻𝐻2) are the uncertain parameters specified 

over the bounds 1≤ 𝐹𝐹𝐻𝐻1 ≤1.8 and 1.95≤ 𝐹𝐹𝐻𝐻2 ≤2.05.  

𝑓𝑓1(𝑧𝑧,𝜃𝜃1,𝜃𝜃2) = 350 − 170 ∙ 𝜃𝜃2 + 𝑧𝑧 − 195 ∙ 𝜃𝜃1 + 85 ∙ 𝜃𝜃2 𝜃𝜃1 − 0.5 ∙ 𝑧𝑧 𝜃𝜃1 ≤ 0 (122) 

𝑓𝑓2(𝑧𝑧,𝜃𝜃1, 𝜃𝜃2) = −195 ∙ 𝜃𝜃1 + 350 − 170 ∙ 𝜃𝜃2 + 𝑧𝑧 ≤ 0 (123) 

𝑓𝑓3(𝑧𝑧,𝜃𝜃1, 𝜃𝜃2) = −270 ∙ 𝜃𝜃1 + 590 − 170 ∙ 𝜃𝜃2 + 𝑧𝑧 ≤ 0 (124) 

𝑓𝑓4(𝑧𝑧,𝜃𝜃1,𝜃𝜃2) = 260 ∙ 𝜃𝜃1 − 590 + 170 ∙ 𝜃𝜃2 − 𝑧𝑧 ≤ 0 (125) 

0 ≤ 𝑧𝑧 ≤ 300 (126) 

where control variable 𝑧𝑧 is the cooling load (𝑄𝑄𝑐𝑐), and the uncertain parameters 𝜃𝜃 are the 

heat capacity flowrate of stream H1 (𝐹𝐹𝐻𝐻1) and H2 (𝐹𝐹𝐻𝐻2). 
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(a) (b) 

Figure 7. (a) Heat exchanger network scheme. (b) Feasibility diagram for fixed value of 
𝐹𝐹𝐻𝐻2=2. 

We solve a modified version of the flexibility test problem for the different cases. 

Numerical results of the HEN example are summarized in Table 6. As we can see, we 

obtain positive values of 𝑢𝑢 for all the cases, indicating an infeasible design. Once again, 

the worst constraint violation is found when no recourse actions are applied (𝑢𝑢=185). The 

value of the worst constraint violation can be reduced to a certain degree when control 

variables can compensate for the variations in 𝜃𝜃1(𝑢𝑢=20). Furthermore, this can be reduced 

when recourse actions can compensate for variation in both uncertain parameters like in 

the traditional flexibility analysis (𝑢𝑢=7.08). It is also important to note, that non-vertex 

critical points are obtained for TFA and EFA cases. 

Table 6. Numerical results of the flexibility test of the heat exchanger network example. 

 

Traditional 
Flexibility 
Analysis 

Extended Flexibility Analysis 

No Control 
𝜃𝜃𝑢𝑢 = {𝜃𝜃1,𝜃𝜃2} 

Original 
Formulation 

Alternative 
Formulation Upper bound 

𝜃𝜃𝑚𝑚 = {𝜃𝜃1,𝜃𝜃2} 𝜃𝜃𝑚𝑚 = 𝜃𝜃1 
𝜃𝜃𝑢𝑢 = 𝜃𝜃2 

𝜃𝜃𝑚𝑚 = 𝜃𝜃1 
𝜃𝜃𝑢𝑢
𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓 = 𝜃𝜃2 

𝑢𝑢 7.08 20 20 11.07 185.5 
𝜃𝜃1 1.398 1.333 1.333 1.373 1.708 

𝜃𝜃2 1.951 2.05 2.002 * 1.95 
𝑦𝑦1 1 1 1 1 0 
𝑦𝑦2 0 0 0 0 0 
𝑦𝑦3 0 1 1 0 0 
𝑦𝑦4 1 0 0 1 1 
𝑧𝑧 98.21 138.5 130.37 104.46 0** 

(*) 𝜃𝜃𝑢𝑢 fixed depending on the sign of the derivative. (**) 𝑧𝑧 fixed to 0 for the no control case. 
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Table 7. Computational statistics and model size of heat exchanger network example. 

 
Traditional 
Flexibility 
Analysis  

Extended Flexibility Analysis No 
Control Original 

Formulation 
Alternative 

Formulation 
Upper 
bound 

#bin var. 4 36 20 4 4 
#cont. var. 17 161 78 16 12 

#constraints 20 163 80 18 10 
Time [s] 0.315 2.632 3.362 0.266 0.203 

Big M value: 500; solver: BARON, solver tolerance: 1E-2, 0 ≤ 𝑧𝑧 ≤ 300  

The HEN is a nonlinear programming problem and whose variation with respect to 𝜃𝜃𝑢𝑢 is 

not monotonic, therefore we cannot ensure that the worst constraint violation for 𝜃𝜃𝑢𝑢 will 

lie at a vertex of the uncertanty set and the application of the upper bound formulation 

(Section 3.4) can yield to invalid results. As we can see in Table 6, the special case 

formulation provides a smaller constraint violation (𝑢𝑢=11.07) than the actual solution 

obtained with the original and alternative EFA formulations (𝑢𝑢=20). The actual solution 

is a non-vertex one, that is the reason why it cannot be found by applying the special case, 

because it simplifies the problem by fixing the value of 𝜃𝜃𝑢𝑢 to one of its vertex. 

The computational results are shown in Table 7.The MINLP problems are solved with 

BARON 18.5.8 (Kilinc and Sahinidis 2018) and the MILP are solved with CPLEX 

12.8.0.0 (IBM ILOG CPLEX Optimization Studio 2018) with default options in an Intel 

i7 machine with 16 Gb of RAM.  

7.3. De-protection Reaction Example 

A thermal deprotection reaction is performed in a CSTR, such that the protecting group 

is cleaved from the protected material (A) to produce the desired product (P) and a 

gaseous byproduct (BP). The deprotection reaction is performed in tetrahydrofuran 

(THF). Assume that reaction pressure can be controlled to ensure a single phase in the 

reactor. The conversion of the protected material (A) needs to be higher than 98%. THF 

is fully removed in an evaporator by almost fully drying the system and adding the right 

amounts of two other solvents, butanol and water. The stream leaving the evaporator feeds 

a crystallizer used to purify the product P. For this final crystallization step, the 

concentration of P in the crystallizer needs to be less than the solubility of that compound 

at the boiling point of the mixture butanol/water mixture at atmospheric pressure to ensure 

full dissolution of the product. Also, the concentration of the product needs to be higher 
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than the solubility at the seed point (Tseed) to ensure seed survival and proper purification. 

It is also desired to maintain the process throughput of at least 1 Kg/day leaving the 

evaporator. 

 

Figure 8. Scheme of de-protection reaction process. 
The reaction mechanism follows first order kinetics:  

A   →k   P + BP (127) 

𝑘𝑘 = 𝐴𝐴 ∙ exp−𝐸𝐸𝑎𝑎/𝑅𝑅𝑇𝑇1  (128) 

𝐴𝐴𝑁𝑁 − σA ≤ 𝐴𝐴 ≤ 𝐴𝐴𝑁𝑁 + σA (129) 

𝐸𝐸𝑎𝑎𝑁𝑁 − σE𝑎𝑎 ≤ 𝐸𝐸𝑎𝑎 ≤ 𝐸𝐸𝑎𝑎𝑁𝑁 + 𝜎𝜎𝐸𝐸𝑎𝑎 (130) 

where 𝐴𝐴 is the pre-exponential factor [min-1] and 𝐸𝐸𝑎𝑎 is the activation energy [J/mol]. Both 

𝐴𝐴 and 𝐸𝐸𝑎𝑎 are considered unmeasured uncertain parameters in the extended flexibility 

analysis, whose nominal values are 4.2E17 and 1.205E5, respectively; and their variance 

are 2.4617E13 and 200, respectively. It is important to note that these parameters and 

their variance have been scaled in the numerical implementation. The measured uncertain 

parameters are described in Table 8 together with their nominal value and expected 

deviation. Finally, the control actions are the water and butanol flowrates. 

Table 8. Description of measured uncertain parameters. 

 Description Nominal Value ±Expected Deviation 

𝑇𝑇1 Reactor Temperature [K] 353.15 10 

𝑉𝑉1  Reaction Volume [L] 50 5 

𝑀𝑀1 Reactor Inlet Flowrate [g/min] 89 5 

𝑤𝑤𝐴𝐴,1 Inlet Mass Fraction of reactant A 0.07 0.005 
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The solubility constraints are described with Eqs. (131) and (132). 

ln�𝑤𝑤𝑛𝑛� ≤ 𝐴𝐴𝑠𝑠 +
𝐵𝐵𝑠𝑠

𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏
+ 𝐶𝐶𝑠𝑠 ∙ 𝑤𝑤𝐻𝐻2𝑂𝑂 + 𝐷𝐷 ∙

𝑤𝑤𝐻𝐻2𝑂𝑂

𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏
 (131) 

ln�𝑤𝑤𝑛𝑛� ≥ 𝐴𝐴𝑠𝑠 +
𝐵𝐵𝑠𝑠
𝑇𝑇𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓

+ 𝐶𝐶𝑠𝑠 ∙ 𝑤𝑤𝐻𝐻2𝑂𝑂 + 𝐷𝐷 ∙
𝑤𝑤𝐻𝐻2𝑂𝑂

𝑇𝑇𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓
 (132) 

where 𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏 is 366.15 [K] and 𝑇𝑇𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓 is 343.15 [K] ; 𝑤𝑤𝑛𝑛and 𝑤𝑤𝐻𝐻2𝑂𝑂 are the weight fraction 

of product and water, respectively. 

As shown in Table 9, we apply the different flexibility test formulations for the non-

reduced model to the de-protection reaction example. It is interesting to note that, it is 

possible to achieve feasible operation for all cases (negative values of 𝑢𝑢), even when 

control actions are not allowed as it can be seen in Table 9. Regarding the unmeasured 

uncertain parameters 𝜃𝜃𝑢𝑢 = {𝐴𝐴,𝐸𝐸𝑎𝑎}, the worst realization correspond to the lower bound 

of the pre-exponential factor 𝐴𝐴 and the upper bound of the activation energy 𝐸𝐸𝑎𝑎, resulting 

in a slower reaction rate. Regarding the measured uncertain parameters, a lower reaction 

temperature (343.15 vs. 353 K) also reduces the reaction rate and a smaller reaction 

volume (45 vs. 50 L) affects the consumption and generation term in the reactor mass 

balance. However, the effect of the inlet mass flowrate and inlet mass fraction is not 

completely intuitive, where an increase of these parameters would benefit the minimum 

conversion and minimum production constraints, but it would also jeopardize the 

solubility constraints. The computational constraints are shown in Table 10. 

Table 9. Numerical results of the flexibility test of the de-protection reaction example. 

 
Traditional 

Flexibility Analysis 
𝜃𝜃𝑚𝑚 = 𝜃𝜃 

Extended Flexibility Analysis 
No Control 
𝜃𝜃𝑢𝑢 = 𝜃𝜃 Original Formulation Alternative Formulation 

𝜃𝜃𝑢𝑢 = {𝐴𝐴,𝐸𝐸𝑎𝑎} 
𝑢𝑢 -9.96 E-3 -9.96 E-3 -9.80 E-3 -8.8 E-3 
𝐴𝐴 4.1998 E17 4.1998 E17 4.1998 E17 4.1998 E17 
𝐸𝐸𝑎𝑎 1.207 E5 1.207 E5 1.207 E5 1.207 E5 
𝑇𝑇1 343.15 343.15 343.15 343.15 
𝑉𝑉1 45 45 45 45 
𝑀𝑀1 92.505 92.505 94 84 
𝑤𝑤𝐴𝐴,1 0.065 0.065 0.075 0.074 

Active 
Set 

Min conversion 
Lower bound of 

solubility  
Min production 

Min convertion 
Upper and lower 

bounds of solubility 

Min conversion 
Upper and lower bounds 

of solubility 

Min 
production 
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Table 10. Computational statistics and model size of de-protection reaction example. 

 Traditional 
Flexibility Analysiis 

Extended Flexibility Analysis 
No Control Original 

Formulation 
Alternative 

Formulation 
#bin var. 4 44 28 4 

#cont. var. 46 221 128 28 
#constraints 53 212 130 34 

Time[s] 0.17 0.260 0.150 0.1* 
Gap Rel: 1E-6 Rel: 1E-6 Rel: 1E-6 Abs: 0.988 

Big M value: 500; solver: BARON, solver tolerance: 1 E-6, (*) time to find the best solution, 
max time: 1000, Rel: relative gap, Abs: absolute gap. 

7.4. Methanol Synthesis Example 

In this section, we evaluate the flexibility of the optimal solution of methanol synthesis 

problem obtained by Turkay and Grossmann (1996). We consider that the process design 

consists of reactor, flash, recycle and purge as shown in Figure 9. The objective of the 

process is to produce at most 1000 tons/day methanol with 90% of purity. It is necessary 

to purge the inert by-product methane from the recycle stream. 

The inlet flowrate, 𝐹𝐹𝑖𝑖𝑛𝑛[kg-mol/s], is the measured uncertain parameter and the conversion 

of hydrogen, 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣, is the unmeasured uncertain parameter. Control variables involve the 

splitting fraction, 𝐸𝐸; flash temperature, 𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ [100 K]; and the vapour phase recovery of 

hydrogen in the flash, 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝐻𝐻2 . State variables are the components stream flowrate, 𝑓𝑓𝑐𝑐𝑗𝑗,𝑖𝑖 

[kg-moli/s], consumption rate of key component, 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚 [kg-molH2/s], vapor pressure 

of individual components, 𝑣𝑣𝑝𝑝𝑖𝑖 [MPa], and the vapor phase recovery in the flash for the 

rest of components, 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖 {𝑚𝑚 = 𝐶𝐶𝐶𝐶,𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻,𝐶𝐶𝐻𝐻4}. 

 

Figure 9. Flexibility analysis of methanol synthesis process. 
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The inlet stream is described by Eq. (133).  

𝑓𝑓𝑐𝑐𝑖𝑖𝑛𝑛,𝑖𝑖 =  𝐹𝐹𝑖𝑖𝑛𝑛 ∙ 𝐹𝐹𝑒𝑒𝑒𝑒𝑑𝑑𝑖𝑖, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (133) 

where 𝑚𝑚 = {𝐻𝐻2,𝐶𝐶𝐶𝐶,𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻,𝐶𝐶𝐻𝐻4}  is the set of chemical components and 𝐹𝐹𝑒𝑒𝑒𝑒𝑑𝑑𝑖𝑖 is the 

feed composition parameter. Eqs. (134) to (136) describe component mass balances of 

mixer and splitter.  

𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝑖𝑖 = 𝑓𝑓𝑐𝑐𝑖𝑖𝑛𝑛,𝑖𝑖 + 𝑓𝑓𝑐𝑐𝑟𝑟𝑓𝑓𝑐𝑐,𝑖𝑖, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (134) 

𝑓𝑓𝑐𝑐𝑟𝑟𝑓𝑓𝑐𝑐,𝑖𝑖 = 𝐸𝐸 ∙ 𝑓𝑓𝑐𝑐𝑡𝑡𝑏𝑏𝑛𝑛,𝑖𝑖, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (135) 

𝑓𝑓𝑐𝑐𝑓𝑓𝑡𝑡𝑏𝑏𝑛𝑛,𝑖𝑖 =  𝑓𝑓𝑐𝑐𝑟𝑟𝑓𝑓𝑐𝑐,𝑖𝑖 + 𝑓𝑓𝑐𝑐𝑛𝑛𝑢𝑢𝑟𝑟𝑏𝑏𝑓𝑓,𝑖𝑖, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (136) 

Eqs. (137) and (138) represent the reaction and the mass balance in the reactor. 

𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚 = 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣 ∙ 𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝐻𝐻2 (137) 

𝑓𝑓𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡,𝑖𝑖 = 𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝑖𝑖 + 𝜈𝜈𝑖𝑖 ∙ 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (138) 

where 𝐻𝐻2 is considered the key component. 

The mass balance in the flash separator, Antoine’s equation, and recovery and equilibrium 

relationships are described by Eqs. (139) to (143), respectively.  

𝑓𝑓𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡,𝑖𝑖 = 𝑓𝑓𝑐𝑐𝑓𝑓𝑡𝑡𝑏𝑏𝑛𝑛,𝑖𝑖 + 𝑓𝑓𝑐𝑐𝑛𝑛𝑟𝑟𝑏𝑏𝑓𝑓,𝑖𝑖, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (139) 

log(7500 𝑣𝑣𝑝𝑝𝑖𝑖) = 𝐴𝐴𝑖𝑖 −
𝐵𝐵𝑖𝑖

100 𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ − 𝐶𝐶𝑖𝑖
, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (140) 

𝑣𝑣𝑝𝑝𝐻𝐻2 ∙ 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖 = 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝐻𝐻2�𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖 ∙ 𝑣𝑣𝑝𝑝𝐻𝐻2 + �1 − 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖� ∙ 𝑣𝑣𝑝𝑝𝑖𝑖�, ∀ 𝑚𝑚 ∈ 𝐼𝐼 \{𝐻𝐻2} (141) 

𝑓𝑓𝑐𝑐𝑓𝑓𝑡𝑡𝑏𝑏𝑛𝑛,𝑖𝑖 = 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖 ∙ 𝑓𝑓𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡,𝑖𝑖 , ∀ 𝑚𝑚 ∈ 𝐼𝐼 (142) 

𝑓𝑓𝑐𝑐𝑛𝑛𝑟𝑟𝑏𝑏𝑓𝑓,𝑖𝑖 = (1 − 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖) ∙ 𝑓𝑓𝑐𝑐𝑟𝑟𝑐𝑐𝑡𝑡,𝑖𝑖 , ∀ 𝑚𝑚 ∈ 𝐼𝐼 (143) 

Process specifications involve purity of component C constraint (Eq. (144)) and 

maximum and minimum production constraint (Eq. (145)).  

𝑓𝑓𝑐𝑐𝑛𝑛𝑟𝑟𝑏𝑏𝑓𝑓,𝐶𝐶𝐻𝐻3𝑂𝑂𝐻𝐻 ≥ 𝑝𝑝𝑢𝑢𝑝𝑝𝑚𝑚𝑡𝑡𝑦𝑦 ∙�𝑓𝑓𝑐𝑐𝑛𝑛𝑟𝑟𝑏𝑏𝑓𝑓,𝑖𝑖
𝑖𝑖

 (144) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑 ≤�𝑓𝑓𝑐𝑐𝑛𝑛𝑟𝑟𝑏𝑏𝑓𝑓,𝑖𝑖
𝑖𝑖

≤ 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑  (145) 

We also take into account bounds on flowrates, consumption, partial pressures, fractions and 
temperatures. 
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𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥 ≤ 𝑓𝑓𝑐𝑐 𝑖𝑖  ≤ 𝑓𝑓𝑐𝑐𝑚𝑚𝑎𝑎𝑥𝑥 , ∀ 𝑚𝑚 ∈ 𝐼𝐼 (146) 

0 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚𝑚𝑚𝑎𝑎𝑥𝑥 (147) 

𝑣𝑣𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑣𝑣𝑝𝑝𝑖𝑖  ≤ 𝑣𝑣𝑝𝑝𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥 , ∀ 𝑚𝑚 ∈ 𝐼𝐼 (148) 

𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑖𝑖  ≤  𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑎𝑎𝑥𝑥, ∀ 𝑚𝑚 ∈ 𝐼𝐼 (149) 

𝐸𝐸𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝐸𝐸 ≤ 𝐸𝐸𝑚𝑚𝑎𝑎𝑥𝑥 (150) 

𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑛𝑛 ≤ 𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ  ≤ 𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑎𝑎𝑥𝑥 (151) 

The range of variation of measured uncertain and unmeasured uncertain parameters are 

as follows. 

𝐹𝐹𝑖𝑖𝑛𝑛𝑁𝑁 + Δ𝐹𝐹𝑖𝑖𝑛𝑛− ≤ 𝐹𝐹𝑖𝑖𝑛𝑛 ≤ 𝐹𝐹𝑖𝑖𝑛𝑛𝑁𝑁 + Δ𝐹𝐹𝑖𝑖𝑛𝑛+  (152) 

𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣𝑁𝑁 − Δ𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣− ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣 ≤ 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣𝑁𝑁 + Δ𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣+ (153) 

where the nominal value of 𝐹𝐹𝑖𝑖𝑛𝑛𝑁𝑁  and 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣𝑁𝑁 are 3.5 and 0.413, respectively. The positive 

and negative expected deviation of 𝐹𝐹𝑖𝑖𝑛𝑛 is 20% of the nominal value, whereas the positive 

and negative expected deviation of 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣 are zero and 10% of the nominal value, 

respectively. 

We perform the flexibility test for the non-reduced model. First, we calculate the worst 

constraint violation for the no recourse case and for the traditional flexibility analysis in 

order to obtain an upper and a lower bound of the solution of the extended flexibility 

analysis, which correspond to 1.91 and -0.01, respectively, as seen in Table 11. This 

implies that feasible operation cannot be ensured for the range of variation of the inlet 

flowrate and conversion if no recourse actions are taken, whereas feasible operation can 

be ensured if control actions can compensate for variations in both uncertain parameters. 

Then, we apply the original (PC1) and alternative (P11) reformulation of the extended 

flexibility test for non-reduced models to the methanol synthesis problem. As a result, we 

obtain a value of 𝑢𝑢 of 0.48 for the original and alternative reformulations. Therefore, 

feasible operation cannot be ensured for the range of variation of both parameters if 

control actions are restricted to compensate only for variations in the measured uncertain 

parameters. The computational results are shown in Table 12. 
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Table 11. Numerical results of the flexibility test for the methanol synthesis example. 

 
Traditional 

Flexibility Analysis 
𝜃𝜃𝑚𝑚 = {𝐹𝐹𝑖𝑖𝑛𝑛 , 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣} 

Extended Flexibility Analysis 

No Control 
𝜃𝜃𝑢𝑢 = {𝐹𝐹𝑖𝑖𝑛𝑛, 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣} 

Original 
Formulation 

Alternative 
Formulation 

𝜃𝜃𝑚𝑚 = 𝐹𝐹𝑖𝑖𝑛𝑛 
𝜃𝜃𝑢𝑢 = 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣 

𝑢𝑢 -0.01 0.48 0.48 1.91 
𝐹𝐹𝑖𝑖𝑛𝑛 4.2 4.2 4.2 4.2 
𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣 0.37 0.37 0.37 0.37 

Active Set 

𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝐻𝐻2
𝑚𝑚𝑎𝑎𝑥𝑥  
𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑛𝑛 
𝑝𝑝𝑢𝑢𝑝𝑝𝑚𝑚𝑡𝑡𝑦𝑦 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑 
𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝐻𝐻2

𝑚𝑚𝑎𝑎𝑥𝑥  

𝑣𝑣𝑝𝑝𝐶𝐶𝐻𝐻4
𝑚𝑚𝑎𝑎𝑥𝑥 

𝑝𝑝𝑢𝑢𝑝𝑝𝑚𝑚𝑡𝑡𝑦𝑦 
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑 
𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝐻𝐻2

𝑚𝑚𝑎𝑎𝑥𝑥  

𝑣𝑣𝑝𝑝𝐶𝐶𝐻𝐻4
𝑚𝑚𝑎𝑎𝑥𝑥 

𝑝𝑝𝑢𝑢𝑝𝑝𝑚𝑚𝑡𝑡𝑦𝑦 
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑 
𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝐻𝐻2

𝑚𝑚𝑎𝑎𝑥𝑥  

𝑓𝑓𝑐𝑐𝑚𝑚𝑖𝑖𝑥𝑥,𝐻𝐻2
𝑚𝑚𝑎𝑎𝑥𝑥  

Table 12. Computational statistics and model size of methanol synthesis example. 

 
Traditional 
Flexibility 
Analysis 

Extended Flexibility Analysis 
No Control Original 

Formulation 
Alternative 

Formulation 
#bin var. 33 201 93 27 

#cont. var. 128 913 370 69 
#constraints 133 903 363 71 

Time [s] 0* 155.16* 77.44* 0.150 
Gap Abs: 0.32 Rel: 0.75 Rel: 0.75 0 

Big M value: 500, solver: BARON, solver tolerance: 1E-2, (*) time to find the best solution, 
max time: 1000, Rel: relative gap, Abs: absolute gap 

The last two examples correspond to MINLP problems, which are solved with BARON 

19.3.24 (Kilinc and Sahinidis 2018) in an Intel i7 machine with 16 Gb of RAM. The 

Vertex enumeration for 𝜃𝜃𝑢𝑢 method and upper bound formulations are not applied, as 

monotonicity of the unmeasured uncertain with respect to model constraint parameters 

cannot be proved. 

It is worth noting that for the special cases, where the single level formulation is similar 

to the one obtained with the TFA. The same restrictions apply in order to obtain a global 

solution. The approach guarantees global optimality to a restricted set of problems where 

the flexibility constraints 𝜒𝜒(𝑑𝑑) are quasi-concave in 𝜃𝜃𝑚𝑚 and the constraint functions are 

jointly quasi-concave in 𝑧𝑧 and 𝜃𝜃𝑚𝑚 and strictly quasi-convex in 𝑧𝑧 for fixed 𝜃𝜃𝑚𝑚. In order to 

obtain global solution for a non-convex problem, a solution strategy as proposed by 

Floudas et al. (2001) should be followed.  

For the general case formulation, the KKT conditions for non-covex problem only 

represent the necessary optimality conditions and may lead to local solutions. Therefore, 

we emphasize the need of providing the tightest bounds to all type of variables and 
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establishing the lower and upper bound of the extended flexibility problem with the 

solutions from the traditional flexibility analysis and the case of no control, respectively. 

Conclusions 

The traditional flexibility analysis has been extended in order to obtain more accurate 

results when dealing with operation under uncertainty, where a distinction of the uncertain 

parameters is made between the measured and unmeasured uncertain parameters. In this 

work, we have proposed new MINLP reformulations of the resulting multilevel 

optimization problem, which involve replacing the innermost problem by its KKT 

optimality conditions in a recursive fashion and the introduction of a mixed-integer 

representation of the complementarity conditions. 

We have demonstrated that the formulation can be simplified for special cases, such as 

convex problems, problems whose constraints vary monotonically with respect to the 

measured and unmeasured uncertain parameters and with respect to the unmeasured 

uncertain parameters only. A feature of the first two cases is that the worst constraint 

violation lies at a vertex of the uncertain parameter sets, where the solution can be 

obtained via vertex enumeration. In such cases, it is proved that the solution can be 

obtained by applying the traditional flexibility analysis. 

For the third case, a vertex enumeration method for the unmeasured uncertain parameters 

together with the active set method at each vertex of 𝑇𝑇𝑢𝑢 can be applied to find the solution 

of the extended flexibility test. In addition, an upper bound formulation is proposed, 

leading to a similar formulation as the one obtained by applying the active set constraint 

strategy (Grossmann and Floudas, 1987).  

For the general case, we have proposed two MINLP reformulations. The original 

reformulation involves the replacement of the inner problems by their optimality and 

complementarity conditions three times, whereas in the alternative reformulation, an 

interchange of the order of the innermost maximization problems results in the 

replacement of the inner problems by their optimality and complementarity conditions 

only twice. This modification results in a final model of smaller size. We have also 

extended the formulations to include models with equality constraints. 

The reformulations were successfully tested and compared in six examples, including 

three analytical examples, a heat exchanger network, a de-protection reaction and a 

simplified flowsheet for methanol synthesis. 
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Appendix A: Review of Traditional Flexibility Analysis 

As shown by Grossmann and Floudas (1987) the flexibility test can be reformulated in 

the following MINLP: 

(𝑃𝑃𝐴𝐴1):𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃∈𝑇𝑇

𝑢𝑢 

s.t.   𝜃𝜃𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑈𝑈𝐿𝐿 

1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 

�𝜆𝜆𝑗𝑗0

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧

= 0 

𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜆𝜆𝑗𝑗0 − 𝑦𝑦𝑗𝑗0 ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝑠𝑠𝑗𝑗0 − 𝑀𝑀�1 − 𝑦𝑦𝑗𝑗0� ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

�𝑦𝑦𝑗𝑗0

𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 

𝜆𝜆𝑗𝑗0, 𝑠𝑠𝑗𝑗0  ≥ 0,𝑦𝑦𝑗𝑗0 ∈ {0,1}, ∀   𝑗𝑗 ∈ 𝐽𝐽 

If there are no recourse variables the flexibility test reduces to: 

(𝑃𝑃𝐴𝐴2):𝜒𝜒(𝑑𝑑) = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃∈𝑇𝑇

𝑢𝑢 

s.t.   𝜃𝜃𝐿𝐿𝐿𝐿 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑈𝑈𝐿𝐿 

𝑓𝑓𝑗𝑗(𝑑𝑑,𝜃𝜃) − 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝑠𝑠𝑗𝑗0 − 𝑀𝑀�1 − 𝑦𝑦𝑗𝑗0� ≤ 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

�𝑦𝑦𝑗𝑗0

𝑗𝑗

= 1 

𝑠𝑠𝑗𝑗0  ≥ 0, 𝑦𝑦𝑗𝑗0 ∈ {0,1}, ∀   𝑗𝑗 ∈ 𝐽𝐽 
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Appendix B: Alternative Reformulation of Extended Flexibility Analysis of Reduced 
Models 

Table B1 Alternative reformulation of reduced models. 
Description Equations 

Objective function (𝑃𝑃𝐵𝐵1):                        𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝜓𝜓(𝑑𝑑,𝜃𝜃𝑚𝑚) 

Model constraints 
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇1𝑗𝑗

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑓𝑓𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢)− 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

1st level 
complementarity 

conditions 

Model constraints 𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

Lower bound 𝜃𝜃𝑢𝑢 𝜆𝜆𝐿𝐿𝑘𝑘
0 ∙ 𝑠𝑠𝐿𝐿𝑘𝑘

0 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 𝜆𝜆𝑈𝑈𝑘𝑘
0 ∙ 𝑠𝑠𝑈𝑈𝑘𝑘

0 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
original model 

variables 

𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇5𝑘𝑘

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆𝐿𝐿𝑘𝑘
0 + 𝜆𝜆𝑈𝑈𝑘𝑘

0 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇6𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠𝐿𝐿𝑘𝑘

0 = 0,   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇7𝑘𝑘

1 = 𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠𝑈𝑈𝑘𝑘

0 = 0,   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives 
w.r.t. original 

model variables 

𝜕𝜕ℒ1
𝜕𝜕𝑢𝑢

= 1 −�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

−�(𝜆𝜆𝐿𝐿𝑛𝑛
1 + 𝜆𝜆𝑈𝑈𝑛𝑛

1 )
𝑛𝑛

= 0 

𝜕𝜕ℒ1
𝜕𝜕𝑧𝑧𝑛𝑛

= �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛

+ �𝜇𝜇5𝑘𝑘
1

𝑘𝑘

�𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕2𝑓𝑓𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆𝐿𝐿𝑛𝑛
1 + 𝜆𝜆𝑈𝑈𝑛𝑛

1 = 0 

 ∀   𝑚𝑚 ∈ 𝑁𝑁 
𝜕𝜕ℒ1
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

∙
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ �𝜇𝜇5𝑘𝑘′
1

𝑘𝑘′
�𝜆𝜆𝑗𝑗0

𝑗𝑗

𝜕𝜕2𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘′

 

−𝜇𝜇6𝑘𝑘
1 + 𝜇𝜇7𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
slack variable 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
1 + 𝜇𝜇2𝑗𝑗

1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝐿𝐿𝑘𝑘

0 = 𝜇𝜇4𝑘𝑘
1 ∙ 𝜆𝜆𝐿𝐿𝑘𝑘

0 + 𝜇𝜇6𝑘𝑘
1 − 𝜆𝜆2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑈𝑈𝑘𝑘

0 = 𝜇𝜇3𝑘𝑘
1 ∙ 𝜆𝜆𝑈𝑈𝑘𝑘

0 + 𝜇𝜇7𝑘𝑘
1 − 𝜆𝜆2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 
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Description Equations 

Derivatives w.r.t. 
Lagrange 

multiplier of 
previous level 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
1 ∙ 𝑠𝑠𝑗𝑗0 +�𝜇𝜇5𝑘𝑘

1

𝑘𝑘

𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

− 𝜆𝜆1𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝐿𝐿𝑘𝑘

0 = 𝜇𝜇4𝑘𝑘
1 ∙ 𝑠𝑠𝐿𝐿𝑘𝑘

0 − 𝜇𝜇5𝑘𝑘
1 − 𝜆𝜆1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑈𝑈𝑘𝑘

0 = 𝜇𝜇3𝑘𝑘
1 ∙ 𝑠𝑠𝑈𝑈𝑘𝑘

0 + 𝜇𝜇5𝑘𝑘
1 − 𝜆𝜆1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝐿𝐿𝑛𝑛

1 = −𝑧𝑧𝑛𝑛 + 𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿 + 𝑠𝑠𝐿𝐿𝑛𝑛
1 − 𝑢𝑢 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 

Upper bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑈𝑈𝑛𝑛

1 = 𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 + 𝑠𝑠𝑈𝑈𝑛𝑛
1 − 𝑢𝑢 = 0,∀   𝑚𝑚 ∈ 𝑁𝑁 

Bounds on 
Lagrange 

multipliers and 
slack variables 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜆𝜆𝑗𝑗0 +  𝑠𝑠1𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝑠𝑠𝑗𝑗0  +  𝑠𝑠2𝑗𝑗
1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝐿𝐿𝑘𝑘

1 = −𝜆𝜆𝐿𝐿𝑘𝑘
0  +  𝑠𝑠1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝐿𝐿𝑘𝑘

1 = −𝑠𝑠𝐿𝐿,𝑘𝑘
0 + 𝑠𝑠2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑈𝑈𝑘𝑘

1 = −𝜆𝜆𝑈𝑈𝑘𝑘
0 +  𝑠𝑠1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑈𝑈𝑘𝑘

1 = −𝑠𝑠𝑈𝑈𝑘𝑘
0 +  𝑠𝑠2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾  

2nd level 
complementarity 

conditions 

Bounds on Lagrange multipliers and 
slack variables related to model 

constraints 

𝜆𝜆1𝑗𝑗
1 ∙  𝑠𝑠1𝑗𝑗

1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜆𝜆2𝑗𝑗
1 ∙  𝑠𝑠2𝑗𝑗

1 = 0,∀   𝑗𝑗 ∈ 𝐽𝐽 

Bounds on Lagrange multipliers and 
slack variables related to lower and 

upper bound of unmeasured 
uncertain parameters 

𝜆𝜆1𝐿𝐿𝑘𝑘
1 ∙ 𝑠𝑠1𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆2𝐿𝐿𝑘𝑘
1 ∙ 𝑠𝑠2𝐿𝐿𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆1𝑈𝑈𝑘𝑘
1 ∙ 𝑠𝑠1𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜆𝜆2𝑈𝑈𝑘𝑘
1 ∙ 𝑠𝑠2𝑈𝑈𝑘𝑘

1 = 0,∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝑧𝑧𝑛𝑛 𝜆𝜆𝐿𝐿𝑛𝑛
1 ∙ 𝑠𝑠𝐿𝐿𝑛𝑛

1 = 0  ∀   𝑚𝑚 ∈ 𝑁𝑁 

Upper bound 𝑧𝑧𝑛𝑛 𝜆𝜆𝑈𝑈𝑛𝑛
1 ∙ 𝑠𝑠𝑈𝑈𝑛𝑛

1 = 0  ∀   𝑚𝑚 ∈ 𝑁𝑁 

Haar Condition �𝑦𝑦𝑗𝑗
𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 
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Model variables: unmeasured uncertain parameter 𝜃𝜃𝑢𝑢, control variables 𝑧𝑧, measured uncertain 
parameters 𝜃𝜃𝑚𝑚, and fixed design variables 𝑑𝑑. Additional variables: slack variables 𝑠𝑠, 
nonnegative 𝜆𝜆 and free 𝜇𝜇 Lagrange multipliers. 

Note: complementarity conditions are replaced by mixed-integer constraints as described by Eq. 
(111) and (112). 

Appendix C: Original Reformulation of Extended Flexibility Analysis of Non-Reduced 
Models 

Table C 1. Original reformulation of non-reduced models 
Description Equation 

Objective function (𝑃𝑃𝐶𝐶1):                          𝜒𝜒(𝑑𝑑) = max
𝜃𝜃𝑚𝑚∈𝑇𝑇𝑚𝑚

𝑢𝑢 

Model equality 
constraints 

𝝏𝝏𝓛𝓛𝟐𝟐
𝝏𝝏𝝁𝝁𝟎𝟎𝒊𝒊

𝟐𝟐 =
𝝏𝝏𝓛𝓛𝟏𝟏
𝝏𝝏𝝁𝝁𝟎𝟎𝒊𝒊

𝟏𝟏 =
𝝏𝝏𝓛𝓛𝟎𝟎
𝝏𝝏𝝁𝝁𝒊𝒊𝟎𝟎

= 𝒉𝒉𝒊𝒊(𝒅𝒅,𝒛𝒛,𝜽𝜽𝒎𝒎,𝜽𝜽𝒖𝒖) = 𝟎𝟎, ∀   𝒊𝒊 ∈ 𝑰𝑰 

Model inequality 
constraints 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇1𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇1𝑗𝑗

1 =
𝜕𝜕ℒ0
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝑔𝑔𝑗𝑗(𝑑𝑑, 𝑧𝑧,𝜃𝜃𝑚𝑚,𝜃𝜃𝑢𝑢)− 𝑢𝑢 + 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

Derivatives w.r.t. 
Lagrange 

multiplier of 
outermost level 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇32

=
𝜕𝜕ℒ1
𝜕𝜕𝜇𝜇31

=
𝜕𝜕ℒ0
𝜕𝜕𝑢𝑢

= 1 −�𝜆𝜆𝑗𝑗0

𝑗𝑗

= 0 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇42

=
𝜕𝜕ℒ1
𝜕𝜕𝑢𝑢

= −1 −�𝜇𝜇1𝑗𝑗
1

𝑗𝑗

= 0 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇5𝑘𝑘

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1𝑗𝑗
1

𝑗𝑗

𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ �𝝁𝝁𝟎𝟎𝒊𝒊
𝟏𝟏

𝒊𝒊

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌

− 𝜆𝜆3𝑘𝑘
1 + 𝜆𝜆4𝑘𝑘

1  = 0 

∀ 𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇6𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
1 + 𝜇𝜇2𝑗𝑗

1 ∙ 𝜆𝜆𝑗𝑗0 − 𝜆𝜆2𝑗𝑗
1 = 0 , ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇7𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2,𝑗𝑗
1 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇31 − 𝜆𝜆1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

Lower bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇12𝑘𝑘

2 = 𝜃𝜃𝑢𝑢𝑘𝑘
𝐿𝐿𝐿𝐿 − 𝜃𝜃𝑢𝑢𝑘𝑘 + 𝑠𝑠3𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 
𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇13𝑘𝑘

2 = 𝜃𝜃𝑢𝑢𝑘𝑘 − 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 + 𝑠𝑠4𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

 

Bounds on 
Lagrange 

multipliers and 
slack variables 

 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇8𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜆𝜆𝑗𝑗0 + 𝑠𝑠1𝑗𝑗
1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇9𝑗𝑗

2 =
𝜕𝜕ℒ1
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝑠𝑠𝑗𝑗0 + 𝑠𝑠2𝑗𝑗
1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆1𝑗𝑗

2 = −𝜆𝜆1𝑗𝑗
1 + 𝑠𝑠1𝑗𝑗2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 
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Description Equation 

 

 

 

 

 

Bounds on 
Lagrange 

multipliers and 
slack variables 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆2𝑗𝑗

2 = −𝜆𝜆2𝑗𝑗
1 + 𝑠𝑠2𝑗𝑗2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆5𝑘𝑘

2 = −𝜆𝜆3𝑘𝑘
1 +  𝑠𝑠5𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆7𝑘𝑘

2 = −𝜆𝜆4𝑘𝑘
1 +  𝑠𝑠7𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆3𝑗𝑗

2 = −𝑠𝑠1𝑗𝑗
1 + 𝑠𝑠3𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆4𝑗𝑗

2 = −𝑠𝑠2𝑗𝑗
1 + 𝑠𝑠4𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆6𝑘𝑘

2 = −𝑠𝑠3𝑘𝑘
1 + 𝑠𝑠6𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆8𝑘𝑘

2 = −𝑠𝑠4𝑘𝑘
1 + 𝑠𝑠8𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

Lower bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆9𝑛𝑛

2 = −𝑧𝑧𝑛𝑛 + 𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿 + 𝑠𝑠9𝑛𝑛
2 − 𝑢𝑢 = 0, ∀   𝑚𝑚 ∈ 𝑁𝑁 

Upper bound 𝑧𝑧𝑛𝑛 
𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆10𝑛𝑛

2 = 𝑧𝑧𝑛𝑛 − 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 +  𝑠𝑠10𝑛𝑛
2 − 𝑢𝑢 = 0, ∀   𝑚𝑚 ∈ 𝑁𝑁 

Derivatives w.r.t. 
model variables 

𝜕𝜕ℒ2
𝜕𝜕𝑢𝑢

= 1 −�𝜇𝜇1𝑗𝑗
2  

𝑗𝑗

−�(𝜆𝜆9𝑛𝑛
2 + 𝜆𝜆10𝑛𝑛

2 )
𝑛𝑛

= 0 

𝜕𝜕ℒ2
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

= �𝜇𝜇1𝑗𝑗
2

𝑗𝑗

𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ �𝝁𝝁𝟎𝟎𝒊𝒊
𝟐𝟐

𝒊𝒊

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌

 

+�𝜇𝜇5𝑘𝑘′
2

𝑘𝑘′
��𝜇𝜇1𝑗𝑗

1

𝑗𝑗

𝜕𝜕2𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘′

+ �𝝁𝝁𝟎𝟎𝒊𝒊
𝟏𝟏

𝒊𝒊

𝝏𝝏𝟐𝟐𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌′

�

−  𝜇𝜇12𝑘𝑘
2 + 𝜇𝜇13𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝑧𝑧𝑛𝑛

= �𝜇𝜇1𝑗𝑗
2

𝑗𝑗

𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛

+ �𝝁𝝁𝟎𝟎𝒊𝒊
𝟐𝟐

𝒊𝒊

𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝒛𝒛𝒏𝒏

 

+�𝜇𝜇5𝑘𝑘
2

𝑘𝑘

��𝜇𝜇1𝑗𝑗
1

𝑗𝑗

𝜕𝜕2𝑔𝑔𝑗𝑗
𝜕𝜕𝑧𝑧𝑛𝑛 𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ �𝝁𝝁𝟎𝟎𝒊𝒊
𝟏𝟏

𝒊𝒊

𝝏𝝏𝟐𝟐𝒉𝒉𝒊𝒊
𝝏𝝏𝒛𝒛𝒏𝒏 𝝏𝝏𝜽𝜽𝒖𝒖𝒌𝒌

� − 𝜆𝜆9𝑛𝑛
2

+  𝜆𝜆10𝑛𝑛
2 = 0, ∀   𝑚𝑚 ∈ 𝑁𝑁 

Derivatives w.r.t. 
slack variable 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠𝑗𝑗0

= 𝜇𝜇1𝑗𝑗
2 + 𝜇𝜇2𝑗𝑗

2 ∙ 𝜆𝜆𝑗𝑗0 + 𝜇𝜇7𝑗𝑗
2 ∙ 𝜇𝜇2𝑗𝑗

1 − 𝜇𝜇9𝑗𝑗
2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠1𝑗𝑗

1 = 𝜇𝜇8𝑗𝑗
2 +  𝜇𝜇10𝑗𝑗

2 ∙ 𝜆𝜆1𝑗𝑗
1 − 𝜆𝜆3𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 
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Description Equation 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠2𝑗𝑗

1 = 𝜇𝜇9𝑗𝑗
2 +  𝜇𝜇11𝑗𝑗

2 ∙ 𝜆𝜆2𝑗𝑗
1 − 𝜆𝜆4𝑗𝑗

2  = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠3𝑘𝑘

1 = 𝜇𝜇14𝑘𝑘
2 ∙ 𝜆𝜆3𝑘𝑘

1 −  𝜆𝜆6𝑘𝑘
2 + 𝜇𝜇12𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝑠𝑠4𝑘𝑘

1 = 𝜇𝜇15𝑘𝑘
2 ∙ 𝜆𝜆4𝑘𝑘

1 −  𝜆𝜆8𝑘𝑘
2 + 𝜇𝜇13𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

Derivatives w.r.t. 
multipliers of 

previous levels 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆𝑗𝑗0

= 𝜇𝜇2𝑗𝑗
2 ∙ 𝑠𝑠𝑗𝑗0 − 𝜇𝜇32 + 𝜇𝜇6𝑗𝑗

2 ∙ 𝜇𝜇2𝑗𝑗
1 − 𝜇𝜇8𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆1𝑗𝑗

1 = −𝜇𝜇7𝑗𝑗
2 + 𝜇𝜇10𝑗𝑗

2 ∙ 𝑠𝑠1𝑗𝑗
1 − 𝜆𝜆1𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆2𝑗𝑗

1 = −𝜇𝜇6𝑗𝑗
2 + 𝜇𝜇11𝑗𝑗

2 ∙ 𝑠𝑠2𝑗𝑗
1 − 𝜆𝜆2𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆3𝑘𝑘

1 = 𝜇𝜇14𝑘𝑘
2 ∙ 𝑠𝑠3,𝑘𝑘

1 −  𝜆𝜆5𝑘𝑘
2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝜕𝜕ℒ2
𝜕𝜕𝜆𝜆4𝑘𝑘

1 = 𝜇𝜇15𝑘𝑘
2 ∙ 𝑠𝑠4𝑘𝑘

1 −  𝜆𝜆7𝑘𝑘
2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

𝝏𝝏𝓛𝓛𝟐𝟐
𝝏𝝏𝝁𝝁𝟎𝟎𝒊𝒊

𝟏𝟏 = �𝝁𝝁𝟓𝟓𝟐𝟐 ∙
𝝏𝝏𝒉𝒉𝒊𝒊
𝝏𝝏𝜽𝜽𝒖𝒖,𝒌𝒌𝒌𝒌

= 𝟎𝟎, ∀   𝒊𝒊 ∈ 𝑰𝑰 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇1𝑗𝑗

1 = −𝜇𝜇42 + �𝜇𝜇52

𝑘𝑘

∙
𝜕𝜕𝑔𝑔𝑗𝑗
𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘

+ 𝜇𝜇6𝑗𝑗
2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇2𝑗𝑗

1 = 𝜇𝜇6𝑗𝑗
2 ∙ 𝜆𝜆𝑗𝑗0 + 𝜇𝜇7𝑗𝑗

2 ∙ 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜕𝜕ℒ2
𝜕𝜕𝜇𝜇31

= −�𝜇𝜇7𝑗𝑗
2

𝑗𝑗

= 0 

1st level 
complementarity 

conditions 

Model constraints 
𝜆𝜆𝑗𝑗0 ∙ 𝑠𝑠𝑗𝑗0 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

2nd level 
complementarity 

conditions 

Bounds on Lagrange multipliers 
and slack variables related to 
model constraints 

𝜆𝜆1𝑗𝑗
1 ∙ 𝑠𝑠1𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

𝜆𝜆2𝑗𝑗
1 ∙ 𝑠𝑠2𝑗𝑗

1 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽 

Lower bound 𝜃𝜃𝑢𝑢 𝜆𝜆3,𝑘𝑘
1 ∙ 𝑠𝑠3,𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

Upper bound 𝜃𝜃𝑢𝑢 𝜆𝜆4,𝑘𝑘
1 ∙ 𝑠𝑠4,𝑘𝑘

1 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾 

3rd level 
complementarity 

conditions 

Bounds on Lagrange multipliers 
and slack variables related to 
original model constraints 

𝜆𝜆𝑙𝑙𝑗𝑗
2 ∙ 𝑠𝑠𝑙𝑙𝑗𝑗

2 = 0, ∀   𝑗𝑗 ∈ 𝐽𝐽,
𝑙𝑙 = {1, … , 4} 
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Description Equation 

Bounds on Lagrange multipliers 
and slack variables related to 
lower and upper bound of 
unmeasured uncertain parameters 

𝜆𝜆𝑙𝑙𝑘𝑘
2 ∙ 𝑠𝑠𝑙𝑙𝑘𝑘

2 = 0, ∀   𝑘𝑘 ∈ 𝐾𝐾,
𝑙𝑙 = {5, … ,8} 

Lower bound 𝑧𝑧𝑛𝑛 

Upper bound 𝑧𝑧𝑛𝑛 
𝜆𝜆𝑙𝑙𝑛𝑛
2 ∙ 𝑠𝑠𝑙𝑙𝑛𝑛

2 = 0 , ∀   𝑚𝑚 ∈ 𝑁𝑁,
𝑙𝑙 = {9,10} 

Haar Condition �𝑦𝑦𝑗𝑗
𝑗𝑗

≤ 𝑚𝑚𝑧𝑧 + 1 

Model variables: unmeasured uncertain parameter 𝜃𝜃𝑢𝑢, control and state variables 𝑧𝑧, measured 
uncertain parameters 𝜃𝜃𝑚𝑚, and fixed design variables 𝑑𝑑. 
Additional variables: slack variables 𝑠𝑠, nonnegative 𝜆𝜆 and free 𝜇𝜇 Lagrange multipliers. 

Note: complementarity conditions are replaced by mixed-integer constraints as described by Eq. 
(111) and (112). 

Appendix D: Computational Software  

A great challenge involved in the flexibility analysis problems is the reformulation of the 

rigorous mathematical formulations for these problems that include non-conventional 

max-min-max and max-min-max-max optimization problems, which cannot be readily 

solved with standard optimization techniques. In general, these types of reformulations 

are implemented manually and are then tedious, time-consuming and error prone. In order 

to avoid these drawbacks, we have developed a tool that automatically performs the 

reformulation of the flexibility problem (Deshpande 2018), based on a widely used open 

source algebraic modeling language, Pyomo (Hart, et al. 2017), written in the high level 

programming language Python. 

The tool comprises of a Python module file that contains the flexibility analysis function. 

The arguments of the function are the model equations and constraints of the system under 

study, a list of the measured and unmeasured uncertain parameters and their expected 

positive and negative deviation, and a list of the control variables together with their lower 

and upper bounds. Once the reformulation is automatically developed within the module, 

it is solved by using an appropriate MINLP solver, which returns the flexibility test 

results, along with critical values of the uncertain parameters. In addition, we use the 

python interface to GAMS 25.1.2 (GAMS Development Corporation 2018) solvers.  
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Nomenclature Section 

Reformulations 

Subscripts 
Inequality constraints, 𝑗𝑗 
Unmeasured uncertain parameters, 𝑘𝑘 
Control variables, 𝑚𝑚 
Superscripts 
Upper bound, 𝑈𝑈𝐵𝐵 
Lower bound, 𝐿𝐿𝐵𝐵 
First optimization level, 0 
Second optimization level, 1 
Third optimization level, 2 
Sets 
Set of inequality reduced constraints, 𝐽𝐽 
Set of unmeasured uncertain parameters, 𝐾𝐾 
Set of control variables, 𝑁𝑁 
Variables 
Design variables, 𝑑𝑑 
Control variables, 𝑧𝑧 
Uncertain parameters, 𝜃𝜃 
Measured uncertain parameters, 𝜃𝜃𝑚𝑚 
Unmeasured uncertain parameters, 𝜃𝜃𝑢𝑢 
Scalar variable of worst constraint violation, 𝑢𝑢 
Nonnegative Lagrange multipliers / slack variables 

Original model constraints, 𝜆𝜆𝑗𝑗0/𝑠𝑠𝑗𝑗0 
Bounds on Lagrange multiplier of 1st level, 𝜆𝜆1𝑗𝑗

1 / 𝑠𝑠1𝑗𝑗
1  

Bounds on slack variables of 1st level, 𝜆𝜆2𝑗𝑗
1 /, 𝑠𝑠2𝑗𝑗

1  
Lower bound of unmeasured uncertain parameters, 𝜆𝜆3𝑘𝑘

1 /𝑠𝑠3𝑘𝑘
1  

Upper bound of unmeasured uncertain parameters, 𝜆𝜆4𝑘𝑘
1 /𝑠𝑠4𝑘𝑘

1  
Bounds on Lagrange multiplier of 2nd level, 𝜆𝜆1𝑗𝑗

2 /𝑠𝑠1𝑗𝑗
2 ; 𝜆𝜆2𝑗𝑗

2 /, 𝑠𝑠2𝑗𝑗
2 ; 𝜆𝜆5𝑘𝑘

2 /𝑠𝑠5𝑘𝑘
2 ; 𝜆𝜆7𝑘𝑘

2 /𝑠𝑠7𝑘𝑘
2  

Bounds on slack variables of 2nd level, 𝜆𝜆3𝑗𝑗
2 /𝑠𝑠3𝑗𝑗

2 ; 𝜆𝜆4𝑗𝑗
2 /, 𝑠𝑠4𝑗𝑗

2 ; 𝜆𝜆6𝑘𝑘
2 / 𝑠𝑠6𝑘𝑘

2 ; 𝜆𝜆8𝑘𝑘
2 /𝑠𝑠8𝑘𝑘

2  
Lower bound of control variables, 𝜆𝜆9𝑛𝑛

2 /𝑠𝑠9𝑛𝑛
2  

Upper bound of control variables, 𝜆𝜆10𝑛𝑛
2 /𝑠𝑠10𝑛𝑛

2  
 

Free Lagrange multipliers 
Second level: 

Model equality constraints, 𝜇𝜇1𝑗𝑗
1  

Complementarity conditions of original model constraints, 𝜇𝜇2𝑗𝑗
1  

Necessary condition𝜕𝜕ℒ0/𝜕𝜕𝑢𝑢, 𝜇𝜇31 
Third level: 

Model equality constraints, 𝜇𝜇1𝑗𝑗
2  

Complementarity conditions: 
Original model constraints 𝜇𝜇2𝑗𝑗

2  
Bound in Lagrange multiplier, 𝜇𝜇10𝑗𝑗

2  



57 
 

Bound in slack variable, 𝜇𝜇11𝑗𝑗
2  

Lower bound of unmeasured uncertain parameters, 𝜇𝜇14𝑘𝑘
2  

Upper bound of unmeasured uncertain parameters, 𝜇𝜇15𝑘𝑘
2  

Necessary conditions: 
𝜕𝜕ℒ1/𝜕𝜕𝜇𝜇31, 𝜇𝜇32 
𝜕𝜕ℒ1/𝜕𝜕𝑢𝑢, 𝜇𝜇42 
𝜕𝜕ℒ1/𝜕𝜕𝜃𝜃𝑢𝑢𝑘𝑘, 𝜇𝜇5𝑘𝑘

2  
𝜕𝜕ℒ1/𝜕𝜕𝑠𝑠𝑗𝑗0 𝜇𝜇6𝑗𝑗

2  
𝜕𝜕ℒ1/𝜕𝜕𝜆𝜆𝑗𝑗0, 𝜇𝜇7𝑗𝑗

2  
Bounds in nonnegative Lagrange multipliers and slack variables, 𝜇𝜇8𝑗𝑗

2 , 𝜇𝜇9𝑗𝑗
2  

Lower and upper bound of unmeasured uncertain parameters, 𝜇𝜇12𝑘𝑘
2 , 𝜇𝜇13𝑘𝑘

2  
Binary variables to model the choice of the active set, 𝑦𝑦𝑗𝑗0 
Expressions 
Flexibility constraint, 𝜒𝜒 
Lagrangean function, ℒ 
Inequality reduced constraints,𝑓𝑓 
Inequality constraints,𝑔𝑔 
Equality constraints, ℎ 
Optimization problems, 𝜓𝜓, 𝜁𝜁, 𝜙𝜙,  
Parameters 
Coefficients of linear terms, 𝑚𝑚𝑗𝑗 , 𝑏𝑏𝑗𝑗 , 𝑐𝑐𝑗𝑗 ,𝑑𝑑𝑗𝑗  
Big M value, 𝑀𝑀 
Dimension of the control variable, 𝑚𝑚𝑧𝑧 
Lower and upper bound of unmeasured uncertain parameters, 𝜃𝜃𝑢𝑢𝑘𝑘

𝐿𝐿𝐿𝐿, 𝜃𝜃𝑢𝑢𝑘𝑘
𝑈𝑈𝐿𝐿 

Lower and upper bound control variables, 𝑧𝑧𝑛𝑛𝐿𝐿𝐿𝐿, 𝑧𝑧𝑛𝑛𝑈𝑈𝐿𝐿 
 

De-protection Reaction Example 
Sets: 

Set of streams, 𝑗𝑗 = {1, 2, 3, 4, 5}  
Set of chemical components, 𝑚𝑚 = {𝐴𝐴,𝑃𝑃,𝐵𝐵𝑃𝑃,𝑇𝑇𝐻𝐻𝐹𝐹,𝐻𝐻2𝐶𝐶,𝐵𝐵}  

Fixed Parameters 
Solubility constants, 𝐴𝐴𝑠𝑠:13.303, 𝐵𝐵𝑠𝑠:-5946.878, 𝐶𝐶𝑠𝑠:-31.909, 𝐷𝐷𝑠𝑠:12881.683 
Seed Temperature [K], 𝑇𝑇𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓: 343.15 
Boiling Temperature [K], 𝑇𝑇𝑏𝑏𝑏𝑏𝑖𝑖𝑙𝑙𝑖𝑖𝑛𝑛𝑏𝑏: 366.15 
Molecular weight [gi/moli],  
𝑀𝑀𝑊𝑊𝑖𝑖 = {𝐴𝐴:470,𝑃𝑃: 370,𝐵𝐵𝑃𝑃:100,𝑇𝑇𝐻𝐻𝐹𝐹:72.11,𝐻𝐻2𝐶𝐶:18.02,𝐵𝐵:74.12} 
Density [gi/ml], 𝜌𝜌𝑖𝑖 = {𝐴𝐴:1,𝑃𝑃: 1,𝐵𝐵𝑃𝑃:1,𝑇𝑇𝐻𝐻𝐹𝐹:0.889,𝐻𝐻2𝐶𝐶:1,𝐵𝐵:0.810} 

Variables: 
Components stream molar flowrate [moli/min], 𝑓𝑓𝑖𝑖,𝑗𝑗 (0; 200) 
Components stream mass flowrate [gi/min], 𝑚𝑚𝑖𝑖,𝑗𝑗 (0; 200) 
Total stream mass flowrate [g/min], 𝑀𝑀𝑗𝑗 (0; 500) 
Mass fraction [gi/g], 𝑤𝑤𝑖𝑖,𝑗𝑗 (0; 1) 
Volumetric flowrate of reactor inlet stream [L/min], 𝑣𝑣0 (0.001; 200) 
Reactor inlet and outlet concentration of reactive A [molA/L], 𝐶𝐶𝐴𝐴,1,𝐶𝐶𝐴𝐴,2 (0.001;1) 
Reaction constant [min-1], 𝑘𝑘 
Reaction rate [mol/(min L)], 𝑝𝑝 

Control Variables: 
Water and butanol inlet stream mass flowrate [gi/min], 𝑚𝑚𝑖𝑖,𝑗𝑗, 𝑚𝑚 = {𝐻𝐻2𝐶𝐶,𝐵𝐵}, 𝑗𝑗 = 3, (5; 90) 
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Measured uncertain parameters: 
Reactor temperature [K], 𝑇𝑇1 
Reaction volume [L], 𝑉𝑉1 
Total mass flowrate of reactor inlet stream [g/min], 𝑀𝑀1  
Mass fraction of reactive A reactor inlet stream [gi/g], 𝑤𝑤𝐴𝐴,1  

Unmeasured uncertain parameters: 
Pre-exponential factor [min-1], 𝐴𝐴 
Activation energy [J/mol], 𝐸𝐸𝑎𝑎 

 

Methanol Synthesis Example 
Sets: 

Set of streams, 𝑗𝑗 = {𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑐𝑐𝑡𝑡,𝑓𝑓𝑡𝑡𝑐𝑐𝑝𝑝, 𝑝𝑝𝑒𝑒𝑐𝑐, 𝑝𝑝𝑝𝑝𝑐𝑐𝑑𝑑,𝑝𝑝𝑢𝑢𝑝𝑝𝑔𝑔𝑒𝑒}  
Set of chemical components, 𝑚𝑚 = {𝐻𝐻2,𝐶𝐶𝐶𝐶,𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻,𝐶𝐶𝐻𝐻4}  

Variables: 
Components stream flowrate [kg-moli/s], 𝑓𝑓𝑐𝑐𝑗𝑗,𝑖𝑖 (0; 5) 
Consumption rate of key component [kg-molH2/s], 𝑐𝑐𝑐𝑐𝑚𝑚𝑠𝑠𝑢𝑢𝑚𝑚 (0; 5) 
Splitting fraction, 𝐸𝐸 (0.01; 0.99) 
Flash temperature [100 K], 𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ (3.4; 5) 
Vapor pressure of individual components [MPa], 𝑣𝑣𝑝𝑝𝑖𝑖 (𝑣𝑣𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛�𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑖𝑖𝑛𝑛�;𝑣𝑣𝑝𝑝𝑖𝑖𝑚𝑚𝑎𝑎𝑥𝑥�𝑇𝑇𝑓𝑓𝑙𝑙𝑠𝑠ℎ𝑚𝑚𝑎𝑎𝑥𝑥�) 
Vapor phase recovery in flash, 𝑒𝑒𝑓𝑓𝑙𝑙𝑠𝑠ℎ,𝑖𝑖  (0.1; 0.99) 

Parameters 
Feed composition, 𝐹𝐹𝑒𝑒𝑒𝑒𝑑𝑑𝑖𝑖  = {𝐻𝐻2: 0.65, 𝐶𝐶𝐶𝐶: 0.30, 𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻: 0, 𝐶𝐶𝐻𝐻4: 0.05} 
Stoichiometry coefficient, 𝜈𝜈𝑖𝑖 {𝐻𝐻2: -1, 𝐶𝐶𝐶𝐶: -0.5, 𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻: 0.5, 𝐶𝐶𝐻𝐻4: 0} 
Antoine coefficients 

𝐴𝐴𝑖𝑖 = {𝐻𝐻2: 13.6333, 𝐶𝐶𝐶𝐶: 14.3686, 𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻: 18.5875, 𝐶𝐶𝐻𝐻4: 15.2243} 
𝐵𝐵𝑖𝑖 = {𝐻𝐻2: 164.9, 𝐶𝐶𝐶𝐶: 530.22, 𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻: 3626.55, 𝐶𝐶𝐻𝐻4: 897.84} 
𝐶𝐶𝑖𝑖 = {𝐻𝐻2: 3.19, 𝐶𝐶𝐶𝐶: -13.15, 𝐶𝐶𝐻𝐻3𝐶𝐶𝐻𝐻: -34.29, 𝐶𝐶𝐻𝐻4: -7.16} 

Measured uncertain parameters: 
Inlet flowrate [kg-mol/s], 𝐹𝐹𝑖𝑖𝑛𝑛  

Unmeasured uncertain parameters: 
Conversion of key component, 𝑐𝑐𝑐𝑐𝑚𝑚𝑣𝑣  
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